Metamath Proof Explorer


Theorem 3ioran

Description: Negated triple disjunction as triple conjunction. (Contributed by Scott Fenton, 19-Apr-2011)

Ref Expression
Assertion 3ioran ( ¬ ( 𝜑𝜓𝜒 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ioran ( ¬ ( 𝜑𝜓 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ) )
2 1 anbi1i ( ( ¬ ( 𝜑𝜓 ) ∧ ¬ 𝜒 ) ↔ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) ∧ ¬ 𝜒 ) )
3 ioran ( ¬ ( ( 𝜑𝜓 ) ∨ 𝜒 ) ↔ ( ¬ ( 𝜑𝜓 ) ∧ ¬ 𝜒 ) )
4 df-3or ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ 𝜒 ) )
5 3 4 xchnxbir ( ¬ ( 𝜑𝜓𝜒 ) ↔ ( ¬ ( 𝜑𝜓 ) ∧ ¬ 𝜒 ) )
6 df-3an ( ( ¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒 ) ↔ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) ∧ ¬ 𝜒 ) )
7 2 5 6 3bitr4i ( ¬ ( 𝜑𝜓𝜒 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒 ) )