Description: Negated triple disjunction as triple conjunction. (Contributed by Scott Fenton, 19-Apr-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3ioran | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ioran | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) | |
| 2 | 1 | anbi1i | ⊢ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ ¬ 𝜒 ) ↔ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) ∧ ¬ 𝜒 ) ) | 
| 3 | ioran | ⊢ ( ¬ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ ¬ 𝜒 ) ) | |
| 4 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | |
| 5 | 3 4 | xchnxbir | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ ¬ 𝜒 ) ) | 
| 6 | df-3an | ⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒 ) ↔ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) ∧ ¬ 𝜒 ) ) | |
| 7 | 2 5 6 | 3bitr4i | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒 ) ) |