Metamath Proof Explorer


Theorem 3jaao

Description: Inference conjoining and disjoining the antecedents of three implications. (Contributed by Jeff Hankins, 15-Aug-2009) (Proof shortened by Andrew Salmon, 13-May-2011)

Ref Expression
Hypotheses 3jaao.1 ( 𝜑 → ( 𝜓𝜒 ) )
3jaao.2 ( 𝜃 → ( 𝜏𝜒 ) )
3jaao.3 ( 𝜂 → ( 𝜁𝜒 ) )
Assertion 3jaao ( ( 𝜑𝜃𝜂 ) → ( ( 𝜓𝜏𝜁 ) → 𝜒 ) )

Proof

Step Hyp Ref Expression
1 3jaao.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 3jaao.2 ( 𝜃 → ( 𝜏𝜒 ) )
3 3jaao.3 ( 𝜂 → ( 𝜁𝜒 ) )
4 1 3ad2ant1 ( ( 𝜑𝜃𝜂 ) → ( 𝜓𝜒 ) )
5 2 3ad2ant2 ( ( 𝜑𝜃𝜂 ) → ( 𝜏𝜒 ) )
6 3 3ad2ant3 ( ( 𝜑𝜃𝜂 ) → ( 𝜁𝜒 ) )
7 4 5 6 3jaod ( ( 𝜑𝜃𝜂 ) → ( ( 𝜓𝜏𝜁 ) → 𝜒 ) )