Metamath Proof Explorer


Theorem 3jao

Description: Disjunction of three antecedents. (Contributed by NM, 8-Apr-1994)

Ref Expression
Assertion 3jao ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ∧ ( 𝜃𝜓 ) ) → ( ( 𝜑𝜒𝜃 ) → 𝜓 ) )

Proof

Step Hyp Ref Expression
1 jao ( ( 𝜑𝜓 ) → ( ( 𝜒𝜓 ) → ( ( 𝜑𝜒 ) → 𝜓 ) ) )
2 df-3or ( ( 𝜑𝜒𝜃 ) ↔ ( ( 𝜑𝜒 ) ∨ 𝜃 ) )
3 jao ( ( ( 𝜑𝜒 ) → 𝜓 ) → ( ( 𝜃𝜓 ) → ( ( ( 𝜑𝜒 ) ∨ 𝜃 ) → 𝜓 ) ) )
4 2 3 syl7bi ( ( ( 𝜑𝜒 ) → 𝜓 ) → ( ( 𝜃𝜓 ) → ( ( 𝜑𝜒𝜃 ) → 𝜓 ) ) )
5 1 4 syl6 ( ( 𝜑𝜓 ) → ( ( 𝜒𝜓 ) → ( ( 𝜃𝜓 ) → ( ( 𝜑𝜒𝜃 ) → 𝜓 ) ) ) )
6 5 3imp ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ∧ ( 𝜃𝜓 ) ) → ( ( 𝜑𝜒𝜃 ) → 𝜓 ) )