Description: Disjunction of three antecedents. (Contributed by NM, 8-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | 3jao | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜓 ) ∧ ( 𝜃 → 𝜓 ) ) → ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jao | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜒 → 𝜓 ) → ( ( 𝜑 ∨ 𝜒 ) → 𝜓 ) ) ) | |
2 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) ↔ ( ( 𝜑 ∨ 𝜒 ) ∨ 𝜃 ) ) | |
3 | jao | ⊢ ( ( ( 𝜑 ∨ 𝜒 ) → 𝜓 ) → ( ( 𝜃 → 𝜓 ) → ( ( ( 𝜑 ∨ 𝜒 ) ∨ 𝜃 ) → 𝜓 ) ) ) | |
4 | 2 3 | syl7bi | ⊢ ( ( ( 𝜑 ∨ 𝜒 ) → 𝜓 ) → ( ( 𝜃 → 𝜓 ) → ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) ) ) |
5 | 1 4 | syl6 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜒 → 𝜓 ) → ( ( 𝜃 → 𝜓 ) → ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) ) ) ) |
6 | 5 | 3imp | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜓 ) ∧ ( 𝜃 → 𝜓 ) ) → ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) ) |