Description: Disjunction of three antecedents. (Contributed by NM, 8-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3jao | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜓 ) ∧ ( 𝜃 → 𝜓 ) ) → ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jao | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜒 → 𝜓 ) → ( ( 𝜑 ∨ 𝜒 ) → 𝜓 ) ) ) | |
| 2 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) ↔ ( ( 𝜑 ∨ 𝜒 ) ∨ 𝜃 ) ) | |
| 3 | jao | ⊢ ( ( ( 𝜑 ∨ 𝜒 ) → 𝜓 ) → ( ( 𝜃 → 𝜓 ) → ( ( ( 𝜑 ∨ 𝜒 ) ∨ 𝜃 ) → 𝜓 ) ) ) | |
| 4 | 2 3 | syl7bi | ⊢ ( ( ( 𝜑 ∨ 𝜒 ) → 𝜓 ) → ( ( 𝜃 → 𝜓 ) → ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) ) ) |
| 5 | 1 4 | syl6 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜒 → 𝜓 ) → ( ( 𝜃 → 𝜓 ) → ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) ) ) ) |
| 6 | 5 | 3imp | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜓 ) ∧ ( 𝜃 → 𝜓 ) ) → ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) ) |