Metamath Proof Explorer


Theorem 3jaob

Description: Disjunction of three antecedents. (Contributed by NM, 13-Sep-2011)

Ref Expression
Assertion 3jaob ( ( ( 𝜑𝜒𝜃 ) → 𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ∧ ( 𝜃𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 3mix1 ( 𝜑 → ( 𝜑𝜒𝜃 ) )
2 1 imim1i ( ( ( 𝜑𝜒𝜃 ) → 𝜓 ) → ( 𝜑𝜓 ) )
3 3mix2 ( 𝜒 → ( 𝜑𝜒𝜃 ) )
4 3 imim1i ( ( ( 𝜑𝜒𝜃 ) → 𝜓 ) → ( 𝜒𝜓 ) )
5 3mix3 ( 𝜃 → ( 𝜑𝜒𝜃 ) )
6 5 imim1i ( ( ( 𝜑𝜒𝜃 ) → 𝜓 ) → ( 𝜃𝜓 ) )
7 2 4 6 3jca ( ( ( 𝜑𝜒𝜃 ) → 𝜓 ) → ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ∧ ( 𝜃𝜓 ) ) )
8 3jao ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ∧ ( 𝜃𝜓 ) ) → ( ( 𝜑𝜒𝜃 ) → 𝜓 ) )
9 7 8 impbii ( ( ( 𝜑𝜒𝜃 ) → 𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ∧ ( 𝜃𝜓 ) ) )