Step |
Hyp |
Ref |
Expression |
1 |
|
3mix1 |
⊢ ( 𝜑 → ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) ) |
2 |
1
|
imim1i |
⊢ ( ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
3 |
|
3mix2 |
⊢ ( 𝜒 → ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) ) |
4 |
3
|
imim1i |
⊢ ( ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) → ( 𝜒 → 𝜓 ) ) |
5 |
|
3mix3 |
⊢ ( 𝜃 → ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) ) |
6 |
5
|
imim1i |
⊢ ( ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) → ( 𝜃 → 𝜓 ) ) |
7 |
2 4 6
|
3jca |
⊢ ( ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) → ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜓 ) ∧ ( 𝜃 → 𝜓 ) ) ) |
8 |
|
3jao |
⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜓 ) ∧ ( 𝜃 → 𝜓 ) ) → ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) ) |
9 |
7 8
|
impbii |
⊢ ( ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜓 ) ∧ ( 𝜃 → 𝜓 ) ) ) |