Metamath Proof Explorer


Theorem 3jaob

Description: Disjunction of three antecedents. (Contributed by NM, 13-Sep-2011) (Proof shortened by Hongxiu Chen, 29-Jun-2025)

Ref Expression
Assertion 3jaob ( ( ( 𝜑𝜒𝜃 ) → 𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ∧ ( 𝜃𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 pm5.53 ( ( ( ( 𝜑𝜒 ) ∨ 𝜃 ) → 𝜓 ) ↔ ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) ∧ ( 𝜃𝜓 ) ) )
2 df-3or ( ( 𝜑𝜒𝜃 ) ↔ ( ( 𝜑𝜒 ) ∨ 𝜃 ) )
3 2 imbi1i ( ( ( 𝜑𝜒𝜃 ) → 𝜓 ) ↔ ( ( ( 𝜑𝜒 ) ∨ 𝜃 ) → 𝜓 ) )
4 df-3an ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ∧ ( 𝜃𝜓 ) ) ↔ ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) ∧ ( 𝜃𝜓 ) ) )
5 1 3 4 3bitr4i ( ( ( 𝜑𝜒𝜃 ) → 𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ∧ ( 𝜃𝜓 ) ) )