| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3mix1 |
⊢ ( 𝜑 → ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) ) |
| 2 |
1
|
imim1i |
⊢ ( ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
| 3 |
|
3mix2 |
⊢ ( 𝜒 → ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) ) |
| 4 |
3
|
imim1i |
⊢ ( ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) → ( 𝜒 → 𝜓 ) ) |
| 5 |
|
3mix3 |
⊢ ( 𝜃 → ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) ) |
| 6 |
5
|
imim1i |
⊢ ( ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) → ( 𝜃 → 𝜓 ) ) |
| 7 |
2 4 6
|
3jca |
⊢ ( ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) → ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜓 ) ∧ ( 𝜃 → 𝜓 ) ) ) |
| 8 |
|
3jao |
⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜓 ) ∧ ( 𝜃 → 𝜓 ) ) → ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) ) |
| 9 |
7 8
|
impbii |
⊢ ( ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜓 ) ∧ ( 𝜃 → 𝜓 ) ) ) |