Metamath Proof Explorer
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005)
|
|
Ref |
Expression |
|
Hypotheses |
3jaod.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
|
|
3jaod.2 |
⊢ ( 𝜑 → ( 𝜃 → 𝜒 ) ) |
|
|
3jaod.3 |
⊢ ( 𝜑 → ( 𝜏 → 𝜒 ) ) |
|
Assertion |
3jaod |
⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) → 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3jaod.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
2 |
|
3jaod.2 |
⊢ ( 𝜑 → ( 𝜃 → 𝜒 ) ) |
3 |
|
3jaod.3 |
⊢ ( 𝜑 → ( 𝜏 → 𝜒 ) ) |
4 |
|
3jao |
⊢ ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜒 ) ∧ ( 𝜏 → 𝜒 ) ) → ( ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) → 𝜒 ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) → 𝜒 ) ) |