Metamath Proof Explorer


Theorem 3jaod

Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005)

Ref Expression
Hypotheses 3jaod.1 ( 𝜑 → ( 𝜓𝜒 ) )
3jaod.2 ( 𝜑 → ( 𝜃𝜒 ) )
3jaod.3 ( 𝜑 → ( 𝜏𝜒 ) )
Assertion 3jaod ( 𝜑 → ( ( 𝜓𝜃𝜏 ) → 𝜒 ) )

Proof

Step Hyp Ref Expression
1 3jaod.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 3jaod.2 ( 𝜑 → ( 𝜃𝜒 ) )
3 3jaod.3 ( 𝜑 → ( 𝜏𝜒 ) )
4 3jao ( ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜒 ) ∧ ( 𝜏𝜒 ) ) → ( ( 𝜓𝜃𝜏 ) → 𝜒 ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( ( 𝜓𝜃𝜏 ) → 𝜒 ) )