Metamath Proof Explorer


Theorem 3jaodan

Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005)

Ref Expression
Hypotheses 3jaodan.1 ( ( 𝜑𝜓 ) → 𝜒 )
3jaodan.2 ( ( 𝜑𝜃 ) → 𝜒 )
3jaodan.3 ( ( 𝜑𝜏 ) → 𝜒 )
Assertion 3jaodan ( ( 𝜑 ∧ ( 𝜓𝜃𝜏 ) ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 3jaodan.1 ( ( 𝜑𝜓 ) → 𝜒 )
2 3jaodan.2 ( ( 𝜑𝜃 ) → 𝜒 )
3 3jaodan.3 ( ( 𝜑𝜏 ) → 𝜒 )
4 1 ex ( 𝜑 → ( 𝜓𝜒 ) )
5 2 ex ( 𝜑 → ( 𝜃𝜒 ) )
6 3 ex ( 𝜑 → ( 𝜏𝜒 ) )
7 4 5 6 3jaod ( 𝜑 → ( ( 𝜓𝜃𝜏 ) → 𝜒 ) )
8 7 imp ( ( 𝜑 ∧ ( 𝜓𝜃𝜏 ) ) → 𝜒 )