Metamath Proof Explorer
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005)
|
|
Ref |
Expression |
|
Hypotheses |
3jaodan.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
|
|
3jaodan.2 |
⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜒 ) |
|
|
3jaodan.3 |
⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜒 ) |
|
Assertion |
3jaodan |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) ) → 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3jaodan.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
2 |
|
3jaodan.2 |
⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜒 ) |
3 |
|
3jaodan.3 |
⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜒 ) |
4 |
1
|
ex |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
5 |
2
|
ex |
⊢ ( 𝜑 → ( 𝜃 → 𝜒 ) ) |
6 |
3
|
ex |
⊢ ( 𝜑 → ( 𝜏 → 𝜒 ) ) |
7 |
4 5 6
|
3jaod |
⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) → 𝜒 ) ) |
8 |
7
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) ) → 𝜒 ) |