Metamath Proof Explorer
Description: Disjunction of three antecedents (inference). (Contributed by NM, 12-Sep-1995)
|
|
Ref |
Expression |
|
Hypotheses |
3jaoi.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
3jaoi.2 |
⊢ ( 𝜒 → 𝜓 ) |
|
|
3jaoi.3 |
⊢ ( 𝜃 → 𝜓 ) |
|
Assertion |
3jaoi |
⊢ ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3jaoi.1 |
⊢ ( 𝜑 → 𝜓 ) |
| 2 |
|
3jaoi.2 |
⊢ ( 𝜒 → 𝜓 ) |
| 3 |
|
3jaoi.3 |
⊢ ( 𝜃 → 𝜓 ) |
| 4 |
1 2 3
|
3pm3.2i |
⊢ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜓 ) ∧ ( 𝜃 → 𝜓 ) ) |
| 5 |
|
3jao |
⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜓 ) ∧ ( 𝜃 → 𝜓 ) ) → ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) |