Metamath Proof Explorer
Description: Disjunction of three antecedents (inference). (Contributed by NM, 14-Oct-2005)
|
|
Ref |
Expression |
|
Hypotheses |
3jaoian.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
|
|
3jaoian.2 |
⊢ ( ( 𝜃 ∧ 𝜓 ) → 𝜒 ) |
|
|
3jaoian.3 |
⊢ ( ( 𝜏 ∧ 𝜓 ) → 𝜒 ) |
|
Assertion |
3jaoian |
⊢ ( ( ( 𝜑 ∨ 𝜃 ∨ 𝜏 ) ∧ 𝜓 ) → 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3jaoian.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
2 |
|
3jaoian.2 |
⊢ ( ( 𝜃 ∧ 𝜓 ) → 𝜒 ) |
3 |
|
3jaoian.3 |
⊢ ( ( 𝜏 ∧ 𝜓 ) → 𝜒 ) |
4 |
1
|
ex |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
5 |
2
|
ex |
⊢ ( 𝜃 → ( 𝜓 → 𝜒 ) ) |
6 |
3
|
ex |
⊢ ( 𝜏 → ( 𝜓 → 𝜒 ) ) |
7 |
4 5 6
|
3jaoi |
⊢ ( ( 𝜑 ∨ 𝜃 ∨ 𝜏 ) → ( 𝜓 → 𝜒 ) ) |
8 |
7
|
imp |
⊢ ( ( ( 𝜑 ∨ 𝜃 ∨ 𝜏 ) ∧ 𝜓 ) → 𝜒 ) |