Metamath Proof Explorer


Theorem 3jaoian

Description: Disjunction of three antecedents (inference). (Contributed by NM, 14-Oct-2005)

Ref Expression
Hypotheses 3jaoian.1 ( ( 𝜑𝜓 ) → 𝜒 )
3jaoian.2 ( ( 𝜃𝜓 ) → 𝜒 )
3jaoian.3 ( ( 𝜏𝜓 ) → 𝜒 )
Assertion 3jaoian ( ( ( 𝜑𝜃𝜏 ) ∧ 𝜓 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 3jaoian.1 ( ( 𝜑𝜓 ) → 𝜒 )
2 3jaoian.2 ( ( 𝜃𝜓 ) → 𝜒 )
3 3jaoian.3 ( ( 𝜏𝜓 ) → 𝜒 )
4 1 ex ( 𝜑 → ( 𝜓𝜒 ) )
5 2 ex ( 𝜃 → ( 𝜓𝜒 ) )
6 3 ex ( 𝜏 → ( 𝜓𝜒 ) )
7 4 5 6 3jaoi ( ( 𝜑𝜃𝜏 ) → ( 𝜓𝜒 ) )
8 7 imp ( ( ( 𝜑𝜃𝜏 ) ∧ 𝜓 ) → 𝜒 )