Metamath Proof Explorer
Description: Deduction conjoining the consequents of three implications.
(Contributed by NM, 25-Sep-2005)
|
|
Ref |
Expression |
|
Hypotheses |
3jcad.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
|
|
3jcad.2 |
⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |
|
|
3jcad.3 |
⊢ ( 𝜑 → ( 𝜓 → 𝜏 ) ) |
|
Assertion |
3jcad |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3jcad.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
2 |
|
3jcad.2 |
⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |
3 |
|
3jcad.3 |
⊢ ( 𝜑 → ( 𝜓 → 𝜏 ) ) |
4 |
1
|
imp |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
5 |
2
|
imp |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |
6 |
3
|
imp |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜏 ) |
7 |
4 5 6
|
3jca |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) |
8 |
7
|
ex |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) |