Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
⊢ 2 ∈ ℝ |
2 |
|
2lt3 |
⊢ 2 < 3 |
3 |
1 2
|
gtneii |
⊢ 3 ≠ 2 |
4 |
|
3prm |
⊢ 3 ∈ ℙ |
5 |
|
2prm |
⊢ 2 ∈ ℙ |
6 |
|
prmrp |
⊢ ( ( 3 ∈ ℙ ∧ 2 ∈ ℙ ) → ( ( 3 gcd 2 ) = 1 ↔ 3 ≠ 2 ) ) |
7 |
4 5 6
|
mp2an |
⊢ ( ( 3 gcd 2 ) = 1 ↔ 3 ≠ 2 ) |
8 |
3 7
|
mpbir |
⊢ ( 3 gcd 2 ) = 1 |
9 |
8
|
oveq2i |
⊢ ( ( 3 lcm 2 ) · ( 3 gcd 2 ) ) = ( ( 3 lcm 2 ) · 1 ) |
10 |
|
3nn |
⊢ 3 ∈ ℕ |
11 |
|
2nn |
⊢ 2 ∈ ℕ |
12 |
|
lcmgcdnn |
⊢ ( ( 3 ∈ ℕ ∧ 2 ∈ ℕ ) → ( ( 3 lcm 2 ) · ( 3 gcd 2 ) ) = ( 3 · 2 ) ) |
13 |
10 11 12
|
mp2an |
⊢ ( ( 3 lcm 2 ) · ( 3 gcd 2 ) ) = ( 3 · 2 ) |
14 |
10
|
nnzi |
⊢ 3 ∈ ℤ |
15 |
11
|
nnzi |
⊢ 2 ∈ ℤ |
16 |
|
lcmcl |
⊢ ( ( 3 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 3 lcm 2 ) ∈ ℕ0 ) |
17 |
14 15 16
|
mp2an |
⊢ ( 3 lcm 2 ) ∈ ℕ0 |
18 |
17
|
nn0cni |
⊢ ( 3 lcm 2 ) ∈ ℂ |
19 |
18
|
mulid1i |
⊢ ( ( 3 lcm 2 ) · 1 ) = ( 3 lcm 2 ) |
20 |
9 13 19
|
3eqtr3ri |
⊢ ( 3 lcm 2 ) = ( 3 · 2 ) |
21 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
22 |
20 21
|
eqtri |
⊢ ( 3 lcm 2 ) = 6 |