Step |
Hyp |
Ref |
Expression |
1 |
|
3cn |
⊢ 3 ∈ ℂ |
2 |
|
2cn |
⊢ 2 ∈ ℂ |
3 |
1 2
|
mulcli |
⊢ ( 3 · 2 ) ∈ ℂ |
4 |
|
3z |
⊢ 3 ∈ ℤ |
5 |
|
2z |
⊢ 2 ∈ ℤ |
6 |
|
lcmcl |
⊢ ( ( 3 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 3 lcm 2 ) ∈ ℕ0 ) |
7 |
6
|
nn0cnd |
⊢ ( ( 3 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 3 lcm 2 ) ∈ ℂ ) |
8 |
4 5 7
|
mp2an |
⊢ ( 3 lcm 2 ) ∈ ℂ |
9 |
4 5
|
pm3.2i |
⊢ ( 3 ∈ ℤ ∧ 2 ∈ ℤ ) |
10 |
|
2ne0 |
⊢ 2 ≠ 0 |
11 |
10
|
neii |
⊢ ¬ 2 = 0 |
12 |
11
|
intnan |
⊢ ¬ ( 3 = 0 ∧ 2 = 0 ) |
13 |
|
gcdn0cl |
⊢ ( ( ( 3 ∈ ℤ ∧ 2 ∈ ℤ ) ∧ ¬ ( 3 = 0 ∧ 2 = 0 ) ) → ( 3 gcd 2 ) ∈ ℕ ) |
14 |
13
|
nncnd |
⊢ ( ( ( 3 ∈ ℤ ∧ 2 ∈ ℤ ) ∧ ¬ ( 3 = 0 ∧ 2 = 0 ) ) → ( 3 gcd 2 ) ∈ ℂ ) |
15 |
9 12 14
|
mp2an |
⊢ ( 3 gcd 2 ) ∈ ℂ |
16 |
9 12 13
|
mp2an |
⊢ ( 3 gcd 2 ) ∈ ℕ |
17 |
16
|
nnne0i |
⊢ ( 3 gcd 2 ) ≠ 0 |
18 |
15 17
|
pm3.2i |
⊢ ( ( 3 gcd 2 ) ∈ ℂ ∧ ( 3 gcd 2 ) ≠ 0 ) |
19 |
|
3nn |
⊢ 3 ∈ ℕ |
20 |
|
2nn |
⊢ 2 ∈ ℕ |
21 |
19 20
|
pm3.2i |
⊢ ( 3 ∈ ℕ ∧ 2 ∈ ℕ ) |
22 |
|
lcmgcdnn |
⊢ ( ( 3 ∈ ℕ ∧ 2 ∈ ℕ ) → ( ( 3 lcm 2 ) · ( 3 gcd 2 ) ) = ( 3 · 2 ) ) |
23 |
22
|
eqcomd |
⊢ ( ( 3 ∈ ℕ ∧ 2 ∈ ℕ ) → ( 3 · 2 ) = ( ( 3 lcm 2 ) · ( 3 gcd 2 ) ) ) |
24 |
21 23
|
mp1i |
⊢ ( ( ( 3 · 2 ) ∈ ℂ ∧ ( 3 lcm 2 ) ∈ ℂ ∧ ( ( 3 gcd 2 ) ∈ ℂ ∧ ( 3 gcd 2 ) ≠ 0 ) ) → ( 3 · 2 ) = ( ( 3 lcm 2 ) · ( 3 gcd 2 ) ) ) |
25 |
|
divmul3 |
⊢ ( ( ( 3 · 2 ) ∈ ℂ ∧ ( 3 lcm 2 ) ∈ ℂ ∧ ( ( 3 gcd 2 ) ∈ ℂ ∧ ( 3 gcd 2 ) ≠ 0 ) ) → ( ( ( 3 · 2 ) / ( 3 gcd 2 ) ) = ( 3 lcm 2 ) ↔ ( 3 · 2 ) = ( ( 3 lcm 2 ) · ( 3 gcd 2 ) ) ) ) |
26 |
24 25
|
mpbird |
⊢ ( ( ( 3 · 2 ) ∈ ℂ ∧ ( 3 lcm 2 ) ∈ ℂ ∧ ( ( 3 gcd 2 ) ∈ ℂ ∧ ( 3 gcd 2 ) ≠ 0 ) ) → ( ( 3 · 2 ) / ( 3 gcd 2 ) ) = ( 3 lcm 2 ) ) |
27 |
26
|
eqcomd |
⊢ ( ( ( 3 · 2 ) ∈ ℂ ∧ ( 3 lcm 2 ) ∈ ℂ ∧ ( ( 3 gcd 2 ) ∈ ℂ ∧ ( 3 gcd 2 ) ≠ 0 ) ) → ( 3 lcm 2 ) = ( ( 3 · 2 ) / ( 3 gcd 2 ) ) ) |
28 |
3 8 18 27
|
mp3an |
⊢ ( 3 lcm 2 ) = ( ( 3 · 2 ) / ( 3 gcd 2 ) ) |
29 |
|
gcdcom |
⊢ ( ( 3 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 3 gcd 2 ) = ( 2 gcd 3 ) ) |
30 |
4 5 29
|
mp2an |
⊢ ( 3 gcd 2 ) = ( 2 gcd 3 ) |
31 |
|
1z |
⊢ 1 ∈ ℤ |
32 |
|
gcdid |
⊢ ( 1 ∈ ℤ → ( 1 gcd 1 ) = ( abs ‘ 1 ) ) |
33 |
31 32
|
ax-mp |
⊢ ( 1 gcd 1 ) = ( abs ‘ 1 ) |
34 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
35 |
33 34
|
eqtr2i |
⊢ 1 = ( 1 gcd 1 ) |
36 |
|
gcdadd |
⊢ ( ( 1 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 1 gcd 1 ) = ( 1 gcd ( 1 + 1 ) ) ) |
37 |
31 31 36
|
mp2an |
⊢ ( 1 gcd 1 ) = ( 1 gcd ( 1 + 1 ) ) |
38 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
39 |
38
|
oveq2i |
⊢ ( 1 gcd ( 1 + 1 ) ) = ( 1 gcd 2 ) |
40 |
35 37 39
|
3eqtri |
⊢ 1 = ( 1 gcd 2 ) |
41 |
|
gcdcom |
⊢ ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 1 gcd 2 ) = ( 2 gcd 1 ) ) |
42 |
31 5 41
|
mp2an |
⊢ ( 1 gcd 2 ) = ( 2 gcd 1 ) |
43 |
|
gcdadd |
⊢ ( ( 2 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 2 gcd 1 ) = ( 2 gcd ( 1 + 2 ) ) ) |
44 |
5 31 43
|
mp2an |
⊢ ( 2 gcd 1 ) = ( 2 gcd ( 1 + 2 ) ) |
45 |
40 42 44
|
3eqtri |
⊢ 1 = ( 2 gcd ( 1 + 2 ) ) |
46 |
|
1p2e3 |
⊢ ( 1 + 2 ) = 3 |
47 |
46
|
oveq2i |
⊢ ( 2 gcd ( 1 + 2 ) ) = ( 2 gcd 3 ) |
48 |
45 47
|
eqtr2i |
⊢ ( 2 gcd 3 ) = 1 |
49 |
30 48
|
eqtri |
⊢ ( 3 gcd 2 ) = 1 |
50 |
49
|
oveq2i |
⊢ ( ( 3 · 2 ) / ( 3 gcd 2 ) ) = ( ( 3 · 2 ) / 1 ) |
51 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
52 |
51
|
oveq1i |
⊢ ( ( 3 · 2 ) / 1 ) = ( 6 / 1 ) |
53 |
|
6cn |
⊢ 6 ∈ ℂ |
54 |
53
|
div1i |
⊢ ( 6 / 1 ) = 6 |
55 |
52 54
|
eqtri |
⊢ ( ( 3 · 2 ) / 1 ) = 6 |
56 |
28 50 55
|
3eqtri |
⊢ ( 3 lcm 2 ) = 6 |