Metamath Proof Explorer


Theorem 3lt10

Description: 3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Assertion 3lt10 3 < 1 0

Proof

Step Hyp Ref Expression
1 3lt4 3 < 4
2 4lt10 4 < 1 0
3 3re 3 ∈ ℝ
4 4re 4 ∈ ℝ
5 10re 1 0 ∈ ℝ
6 3 4 5 lttri ( ( 3 < 4 ∧ 4 < 1 0 ) → 3 < 1 0 )
7 1 2 6 mp2an 3 < 1 0