Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3mix1 | ⊢ ( 𝜑 → ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | ⊢ ( 𝜑 → ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) | |
| 2 | 3orass | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) | |
| 3 | 1 2 | sylibr | ⊢ ( 𝜑 → ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) |