Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3mixd.1 | ⊢ ( 𝜑 → 𝜓 ) | |
Assertion | 3mix1d | ⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ∨ 𝜃 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mixd.1 | ⊢ ( 𝜑 → 𝜓 ) | |
2 | 3mix1 | ⊢ ( 𝜓 → ( 𝜓 ∨ 𝜒 ∨ 𝜃 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ∨ 𝜃 ) ) |