Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3mixd.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| Assertion | 3mix2d | ⊢ ( 𝜑 → ( 𝜒 ∨ 𝜓 ∨ 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | 3mix2 | ⊢ ( 𝜓 → ( 𝜒 ∨ 𝜓 ∨ 𝜃 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( 𝜒 ∨ 𝜓 ∨ 𝜃 ) ) |