Metamath Proof Explorer
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012)
|
|
Ref |
Expression |
|
Hypotheses |
3netr3g.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
|
|
3netr3g.2 |
⊢ 𝐴 = 𝐶 |
|
|
3netr3g.3 |
⊢ 𝐵 = 𝐷 |
|
Assertion |
3netr3g |
⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3netr3g.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 2 |
|
3netr3g.2 |
⊢ 𝐴 = 𝐶 |
| 3 |
|
3netr3g.3 |
⊢ 𝐵 = 𝐷 |
| 4 |
2 3
|
neeq12i |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) |
| 5 |
1 4
|
sylib |
⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) |