Metamath Proof Explorer
		
		
		
		Description:  Substitution of equality into both sides of an inequality.  (Contributed by NM, 14-Jun-2012)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | 3netr4g.1 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
					
						|  |  | 3netr4g.2 | ⊢ 𝐶  =  𝐴 | 
					
						|  |  | 3netr4g.3 | ⊢ 𝐷  =  𝐵 | 
				
					|  | Assertion | 3netr4g | ⊢  ( 𝜑  →  𝐶  ≠  𝐷 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3netr4g.1 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 2 |  | 3netr4g.2 | ⊢ 𝐶  =  𝐴 | 
						
							| 3 |  | 3netr4g.3 | ⊢ 𝐷  =  𝐵 | 
						
							| 4 | 2 3 | neeq12i | ⊢ ( 𝐶  ≠  𝐷  ↔  𝐴  ≠  𝐵 ) | 
						
							| 5 | 1 4 | sylibr | ⊢ ( 𝜑  →  𝐶  ≠  𝐷 ) |