Metamath Proof Explorer


Theorem 3netr4g

Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 14-Jun-2012)

Ref Expression
Hypotheses 3netr4g.1 ( 𝜑𝐴𝐵 )
3netr4g.2 𝐶 = 𝐴
3netr4g.3 𝐷 = 𝐵
Assertion 3netr4g ( 𝜑𝐶𝐷 )

Proof

Step Hyp Ref Expression
1 3netr4g.1 ( 𝜑𝐴𝐵 )
2 3netr4g.2 𝐶 = 𝐴
3 3netr4g.3 𝐷 = 𝐵
4 2 3 neeq12i ( 𝐶𝐷𝐴𝐵 )
5 1 4 sylibr ( 𝜑𝐶𝐷 )