Description: Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3o1cs.1 | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) → 𝜃 ) | |
Assertion | 3o3cs | ⊢ ( 𝜒 → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3o1cs.1 | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) → 𝜃 ) | |
2 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | |
3 | 2 1 | sylbir | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) → 𝜃 ) |
4 | 3 | olcs | ⊢ ( 𝜒 → 𝜃 ) |