Step |
Hyp |
Ref |
Expression |
1 |
|
3optocl.1 |
⊢ 𝑅 = ( 𝐷 × 𝐹 ) |
2 |
|
3optocl.2 |
⊢ ( 〈 𝑥 , 𝑦 〉 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
3optocl.3 |
⊢ ( 〈 𝑧 , 𝑤 〉 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
4 |
|
3optocl.4 |
⊢ ( 〈 𝑣 , 𝑢 〉 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) |
5 |
|
3optocl.5 |
⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) ) → 𝜑 ) |
6 |
4
|
imbi2d |
⊢ ( 〈 𝑣 , 𝑢 〉 = 𝐶 → ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) ↔ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) → 𝜃 ) ) ) |
7 |
2
|
imbi2d |
⊢ ( 〈 𝑥 , 𝑦 〉 = 𝐴 → ( ( ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) → 𝜑 ) ↔ ( ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) → 𝜓 ) ) ) |
8 |
3
|
imbi2d |
⊢ ( 〈 𝑧 , 𝑤 〉 = 𝐵 → ( ( ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) → 𝜓 ) ↔ ( ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) → 𝜒 ) ) ) |
9 |
5
|
3expia |
⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹 ) ) → ( ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) → 𝜑 ) ) |
10 |
1 7 8 9
|
2optocl |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) → ( ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) → 𝜒 ) ) |
11 |
10
|
com12 |
⊢ ( ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) → ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) ) |
12 |
1 6 11
|
optocl |
⊢ ( 𝐶 ∈ 𝑅 → ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) → 𝜃 ) ) |
13 |
12
|
impcom |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) ∧ 𝐶 ∈ 𝑅 ) → 𝜃 ) |
14 |
13
|
3impa |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑅 ) → 𝜃 ) |