Description: Triple disjunction in terms of triple conjunction. (Contributed by NM, 8-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3oran | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ¬ ( ¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ioran | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒 ) ) | |
| 2 | 1 | con1bii | ⊢ ( ¬ ( ¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) |
| 3 | 2 | bicomi | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ¬ ( ¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒 ) ) |