Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3orass | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | |
| 2 | orass | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) | |
| 3 | 1 2 | bitri | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) |