Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | 3orass | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | |
2 | orass | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) | |
3 | 1 2 | bitri | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) |