Metamath Proof Explorer


Theorem 3orass

Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994)

Ref Expression
Assertion 3orass ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 df-3or ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ 𝜒 ) )
2 orass ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓𝜒 ) ) )
3 1 2 bitri ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓𝜒 ) ) )