Metamath Proof Explorer


Theorem 3orel1

Description: Partial elimination of a triple disjunction by denial of a disjunct. (Contributed by Scott Fenton, 26-Mar-2011)

Ref Expression
Assertion 3orel1 ( ¬ 𝜑 → ( ( 𝜑𝜓𝜒 ) → ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 3orass ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓𝜒 ) ) )
2 orel1 ( ¬ 𝜑 → ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) → ( 𝜓𝜒 ) ) )
3 1 2 syl5bi ( ¬ 𝜑 → ( ( 𝜑𝜓𝜒 ) → ( 𝜓𝜒 ) ) )