Metamath Proof Explorer
Description: Infer implication from triple disjunction. (Contributed by NM, 26-Sep-2006)
|
|
Ref |
Expression |
|
Hypothesis |
3ori.1 |
⊢ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) |
|
Assertion |
3ori |
⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3ori.1 |
⊢ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) |
2 |
|
ioran |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) |
3 |
|
df-3or |
⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) |
4 |
1 3
|
mpbi |
⊢ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) |
5 |
4
|
ori |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → 𝜒 ) |
6 |
2 5
|
sylbir |
⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) |