Metamath Proof Explorer


Theorem 3pm3.2i

Description: Infer conjunction of premises. (Contributed by NM, 10-Feb-1995)

Ref Expression
Hypotheses 3pm3.2i.1 𝜑
3pm3.2i.2 𝜓
3pm3.2i.3 𝜒
Assertion 3pm3.2i ( 𝜑𝜓𝜒 )

Proof

Step Hyp Ref Expression
1 3pm3.2i.1 𝜑
2 3pm3.2i.2 𝜓
3 3pm3.2i.3 𝜒
4 1 2 pm3.2i ( 𝜑𝜓 )
5 df-3an ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
6 4 3 5 mpbir2an ( 𝜑𝜓𝜒 )