Metamath Proof Explorer
Description: Infer conjunction of premises. (Contributed by NM, 10-Feb-1995)
|
|
Ref |
Expression |
|
Hypotheses |
3pm3.2i.1 |
⊢ 𝜑 |
|
|
3pm3.2i.2 |
⊢ 𝜓 |
|
|
3pm3.2i.3 |
⊢ 𝜒 |
|
Assertion |
3pm3.2i |
⊢ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3pm3.2i.1 |
⊢ 𝜑 |
2 |
|
3pm3.2i.2 |
⊢ 𝜓 |
3 |
|
3pm3.2i.3 |
⊢ 𝜒 |
4 |
1 2
|
pm3.2i |
⊢ ( 𝜑 ∧ 𝜓 ) |
5 |
|
df-3an |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
6 |
4 3 5
|
mpbir2an |
⊢ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) |