Metamath Proof Explorer


Theorem 3pos

Description: The number 3 is positive. (Contributed by NM, 27-May-1999)

Ref Expression
Assertion 3pos 0 < 3

Proof

Step Hyp Ref Expression
1 2re 2 ∈ ℝ
2 1re 1 ∈ ℝ
3 2pos 0 < 2
4 0lt1 0 < 1
5 1 2 3 4 addgt0ii 0 < ( 2 + 1 )
6 df-3 3 = ( 2 + 1 )
7 5 6 breqtrri 0 < 3