Step |
Hyp |
Ref |
Expression |
1 |
|
3z |
⊢ 3 ∈ ℤ |
2 |
|
1lt3 |
⊢ 1 < 3 |
3 |
|
eluz2b1 |
⊢ ( 3 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 3 ∈ ℤ ∧ 1 < 3 ) ) |
4 |
1 2 3
|
mpbir2an |
⊢ 3 ∈ ( ℤ≥ ‘ 2 ) |
5 |
|
elfz1eq |
⊢ ( 𝑧 ∈ ( 2 ... 2 ) → 𝑧 = 2 ) |
6 |
|
n2dvds3 |
⊢ ¬ 2 ∥ 3 |
7 |
|
breq1 |
⊢ ( 𝑧 = 2 → ( 𝑧 ∥ 3 ↔ 2 ∥ 3 ) ) |
8 |
6 7
|
mtbiri |
⊢ ( 𝑧 = 2 → ¬ 𝑧 ∥ 3 ) |
9 |
5 8
|
syl |
⊢ ( 𝑧 ∈ ( 2 ... 2 ) → ¬ 𝑧 ∥ 3 ) |
10 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
11 |
10
|
oveq2i |
⊢ ( 2 ... ( 3 − 1 ) ) = ( 2 ... 2 ) |
12 |
9 11
|
eleq2s |
⊢ ( 𝑧 ∈ ( 2 ... ( 3 − 1 ) ) → ¬ 𝑧 ∥ 3 ) |
13 |
12
|
rgen |
⊢ ∀ 𝑧 ∈ ( 2 ... ( 3 − 1 ) ) ¬ 𝑧 ∥ 3 |
14 |
|
isprm3 |
⊢ ( 3 ∈ ℙ ↔ ( 3 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( 2 ... ( 3 − 1 ) ) ¬ 𝑧 ∥ 3 ) ) |
15 |
4 13 14
|
mpbir2an |
⊢ 3 ∈ ℙ |