Metamath Proof Explorer


Theorem 3prm

Description: 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion 3prm 3 ∈ ℙ

Proof

Step Hyp Ref Expression
1 3z 3 ∈ ℤ
2 1lt3 1 < 3
3 eluz2b1 ( 3 ∈ ( ℤ ‘ 2 ) ↔ ( 3 ∈ ℤ ∧ 1 < 3 ) )
4 1 2 3 mpbir2an 3 ∈ ( ℤ ‘ 2 )
5 elfz1eq ( 𝑧 ∈ ( 2 ... 2 ) → 𝑧 = 2 )
6 n2dvds3 ¬ 2 ∥ 3
7 breq1 ( 𝑧 = 2 → ( 𝑧 ∥ 3 ↔ 2 ∥ 3 ) )
8 6 7 mtbiri ( 𝑧 = 2 → ¬ 𝑧 ∥ 3 )
9 5 8 syl ( 𝑧 ∈ ( 2 ... 2 ) → ¬ 𝑧 ∥ 3 )
10 3m1e2 ( 3 − 1 ) = 2
11 10 oveq2i ( 2 ... ( 3 − 1 ) ) = ( 2 ... 2 )
12 9 11 eleq2s ( 𝑧 ∈ ( 2 ... ( 3 − 1 ) ) → ¬ 𝑧 ∥ 3 )
13 12 rgen 𝑧 ∈ ( 2 ... ( 3 − 1 ) ) ¬ 𝑧 ∥ 3
14 isprm3 ( 3 ∈ ℙ ↔ ( 3 ∈ ( ℤ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( 2 ... ( 3 − 1 ) ) ¬ 𝑧 ∥ 3 ) )
15 4 13 14 mpbir2an 3 ∈ ℙ