Step |
Hyp |
Ref |
Expression |
1 |
|
3wlkd.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 |
2 |
|
3wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 |
3 |
|
3wlkd.s |
⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) |
4 |
|
3wlkd.n |
⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) |
5 |
|
3wlkd.e |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) |
6 |
|
3wlkd.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
7 |
|
3wlkd.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
8 |
|
3trld.n |
⊢ ( 𝜑 → ( 𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿 ) ) |
9 |
|
s4cli |
⊢ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ∈ Word V |
10 |
1 9
|
eqeltri |
⊢ 𝑃 ∈ Word V |
11 |
10
|
a1i |
⊢ ( 𝜑 → 𝑃 ∈ Word V ) |
12 |
2
|
fveq2i |
⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 𝐾 𝐿 ”〉 ) |
13 |
|
s3len |
⊢ ( ♯ ‘ 〈“ 𝐽 𝐾 𝐿 ”〉 ) = 3 |
14 |
12 13
|
eqtri |
⊢ ( ♯ ‘ 𝐹 ) = 3 |
15 |
|
4m1e3 |
⊢ ( 4 − 1 ) = 3 |
16 |
1
|
fveq2i |
⊢ ( ♯ ‘ 𝑃 ) = ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) |
17 |
|
s4len |
⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = 4 |
18 |
16 17
|
eqtr2i |
⊢ 4 = ( ♯ ‘ 𝑃 ) |
19 |
18
|
oveq1i |
⊢ ( 4 − 1 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) |
20 |
14 15 19
|
3eqtr2i |
⊢ ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) |
21 |
1 2 3 4
|
3pthdlem1 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
22 |
|
eqid |
⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝐹 ) |
23 |
1 2 3 4 5 6 7 8
|
3trld |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
24 |
11 20 21 22 23
|
pthd |
⊢ ( 𝜑 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |