Metamath Proof Explorer
		
		
		
		Description:  Inference adding three restricted universal quantifiers to both sides of
       an equivalence.  (Contributed by Peter Mazsa, 25-Jul-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | 3ralbii.1 | ⊢ ( 𝜑  ↔  𝜓 ) | 
				
					|  | Assertion | 3ralbii | ⊢  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 𝜑  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3ralbii.1 | ⊢ ( 𝜑  ↔  𝜓 ) | 
						
							| 2 | 1 | 2ralbii | ⊢ ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 𝜑  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 𝜓 ) | 
						
							| 3 | 2 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 𝜑  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 𝜓 ) |