Metamath Proof Explorer


Theorem 3ralimi

Description: Inference quantifying both antecedent and consequent three times, with strong hypothesis. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Hypothesis 2ralimi.1 ( 𝜑𝜓 )
Assertion 3ralimi ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 → ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 )

Proof

Step Hyp Ref Expression
1 2ralimi.1 ( 𝜑𝜓 )
2 1 ralimi ( ∀ 𝑧𝐶 𝜑 → ∀ 𝑧𝐶 𝜓 )
3 2 2ralimi ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 → ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 )