Metamath Proof Explorer
Description: Inference quantifying both antecedent and consequent three times, with
strong hypothesis. (Contributed by Scott Fenton, 5-Mar-2025)
|
|
Ref |
Expression |
|
Hypothesis |
2ralimi.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
Assertion |
3ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
2ralimi.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
1
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝐶 𝜑 → ∀ 𝑧 ∈ 𝐶 𝜓 ) |
3 |
2
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜓 ) |