Metamath Proof Explorer


Theorem 3rp

Description: 3 is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion 3rp 3 ∈ ℝ+

Proof

Step Hyp Ref Expression
1 3re 3 ∈ ℝ
2 3pos 0 < 3
3 1 2 elrpii 3 ∈ ℝ+