Metamath Proof Explorer


Theorem 3t3e9

Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion 3t3e9 ( 3 · 3 ) = 9

Proof

Step Hyp Ref Expression
1 df-3 3 = ( 2 + 1 )
2 1 oveq2i ( 3 · 3 ) = ( 3 · ( 2 + 1 ) )
3 3cn 3 ∈ ℂ
4 2cn 2 ∈ ℂ
5 ax-1cn 1 ∈ ℂ
6 3 4 5 adddii ( 3 · ( 2 + 1 ) ) = ( ( 3 · 2 ) + ( 3 · 1 ) )
7 3t2e6 ( 3 · 2 ) = 6
8 3t1e3 ( 3 · 1 ) = 3
9 7 8 oveq12i ( ( 3 · 2 ) + ( 3 · 1 ) ) = ( 6 + 3 )
10 6 9 eqtri ( 3 · ( 2 + 1 ) ) = ( 6 + 3 )
11 6p3e9 ( 6 + 3 ) = 9
12 10 11 eqtri ( 3 · ( 2 + 1 ) ) = 9
13 2 12 eqtri ( 3 · 3 ) = 9