| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							3wlkd.p | 
							⊢ 𝑃  =  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉  | 
						
						
							| 2 | 
							
								
							 | 
							3wlkd.f | 
							⊢ 𝐹  =  〈“ 𝐽 𝐾 𝐿 ”〉  | 
						
						
							| 3 | 
							
								
							 | 
							3wlkd.s | 
							⊢ ( 𝜑  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							3wlkd.n | 
							⊢ ( 𝜑  →  ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶 )  ∧  ( 𝐵  ≠  𝐶  ∧  𝐵  ≠  𝐷 )  ∧  𝐶  ≠  𝐷 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							3wlkd.e | 
							⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ 𝐽 )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ 𝐾 )  ∧  { 𝐶 ,  𝐷 }  ⊆  ( 𝐼 ‘ 𝐿 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							3wlkd.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 7 | 
							
								
							 | 
							3wlkd.i | 
							⊢ 𝐼  =  ( iEdg ‘ 𝐺 )  | 
						
						
							| 8 | 
							
								
							 | 
							3trld.n | 
							⊢ ( 𝜑  →  ( 𝐽  ≠  𝐾  ∧  𝐽  ≠  𝐿  ∧  𝐾  ≠  𝐿 ) )  | 
						
						
							| 9 | 
							
								1 2 3 4 5 6 7
							 | 
							3wlkd | 
							⊢ ( 𝜑  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 )  | 
						
						
							| 10 | 
							
								1 2 3 4 5
							 | 
							3wlkdlem7 | 
							⊢ ( 𝜑  →  ( 𝐽  ∈  V  ∧  𝐾  ∈  V  ∧  𝐿  ∈  V ) )  | 
						
						
							| 11 | 
							
								
							 | 
							funcnvs3 | 
							⊢ ( ( ( 𝐽  ∈  V  ∧  𝐾  ∈  V  ∧  𝐿  ∈  V )  ∧  ( 𝐽  ≠  𝐾  ∧  𝐽  ≠  𝐿  ∧  𝐾  ≠  𝐿 ) )  →  Fun  ◡ 〈“ 𝐽 𝐾 𝐿 ”〉 )  | 
						
						
							| 12 | 
							
								10 8 11
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  Fun  ◡ 〈“ 𝐽 𝐾 𝐿 ”〉 )  | 
						
						
							| 13 | 
							
								2
							 | 
							cnveqi | 
							⊢ ◡ 𝐹  =  ◡ 〈“ 𝐽 𝐾 𝐿 ”〉  | 
						
						
							| 14 | 
							
								13
							 | 
							funeqi | 
							⊢ ( Fun  ◡ 𝐹  ↔  Fun  ◡ 〈“ 𝐽 𝐾 𝐿 ”〉 )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							sylibr | 
							⊢ ( 𝜑  →  Fun  ◡ 𝐹 )  | 
						
						
							| 16 | 
							
								
							 | 
							istrl | 
							⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝐹 ) )  | 
						
						
							| 17 | 
							
								9 15 16
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  𝐹 ( Trails ‘ 𝐺 ) 𝑃 )  |