| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3vfriswmgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
3vfriswmgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
animorr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( { 𝐴 , 𝐴 } ∈ 𝐸 ∨ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
| 4 |
|
preq2 |
⊢ ( 𝑤 = 𝐴 → { 𝐴 , 𝑤 } = { 𝐴 , 𝐴 } ) |
| 5 |
4
|
eleq1d |
⊢ ( 𝑤 = 𝐴 → ( { 𝐴 , 𝑤 } ∈ 𝐸 ↔ { 𝐴 , 𝐴 } ∈ 𝐸 ) ) |
| 6 |
|
preq2 |
⊢ ( 𝑤 = 𝐵 → { 𝐴 , 𝑤 } = { 𝐴 , 𝐵 } ) |
| 7 |
6
|
eleq1d |
⊢ ( 𝑤 = 𝐵 → ( { 𝐴 , 𝑤 } ∈ 𝐸 ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
| 8 |
5 7
|
rexprg |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ∃ 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ↔ ( { 𝐴 , 𝐴 } ∈ 𝐸 ∨ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) ) |
| 9 |
8
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) → ( ∃ 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ↔ ( { 𝐴 , 𝐴 } ∈ 𝐸 ∨ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) ) |
| 10 |
9
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( ∃ 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ↔ ( { 𝐴 , 𝐴 } ∈ 𝐸 ∨ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) ) |
| 11 |
3 10
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∃ 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ) |
| 12 |
|
df-rex |
⊢ ( ∃ 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ↔ ∃ 𝑤 ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ) |
| 13 |
11 12
|
sylib |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∃ 𝑤 ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ) |
| 14 |
|
vex |
⊢ 𝑤 ∈ V |
| 15 |
14
|
elpr |
⊢ ( 𝑤 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑤 = 𝐴 ∨ 𝑤 = 𝐵 ) ) |
| 16 |
|
vex |
⊢ 𝑦 ∈ V |
| 17 |
16
|
elpr |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) |
| 18 |
|
eqidd |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐴 ) |
| 19 |
18
|
a1i |
⊢ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐴 ) ) |
| 20 |
19
|
a1i13 |
⊢ ( 𝑦 = 𝐴 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐴 ) ) ) ) |
| 21 |
|
preq2 |
⊢ ( 𝑦 = 𝐴 → { 𝐴 , 𝑦 } = { 𝐴 , 𝐴 } ) |
| 22 |
21
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( { 𝐴 , 𝑦 } ∈ 𝐸 ↔ { 𝐴 , 𝐴 } ∈ 𝐸 ) ) |
| 23 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐴 ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ↔ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐴 ) ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ↔ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐴 ) ) ) ) |
| 26 |
20 22 25
|
3imtr4d |
⊢ ( 𝑦 = 𝐴 → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ) ) |
| 27 |
2
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐴 ≠ 𝐴 ) |
| 28 |
27
|
adantll |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐴 ≠ 𝐴 ) |
| 29 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐴 ) |
| 30 |
|
eqid |
⊢ 𝐴 = 𝐴 |
| 31 |
30
|
pm2.24i |
⊢ ( ¬ 𝐴 = 𝐴 → 𝐴 = 𝐵 ) |
| 32 |
29 31
|
sylbi |
⊢ ( 𝐴 ≠ 𝐴 → 𝐴 = 𝐵 ) |
| 33 |
28 32
|
syl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐴 = 𝐵 ) |
| 34 |
33
|
ex |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { 𝐴 , 𝐴 } ∈ 𝐸 → 𝐴 = 𝐵 ) ) |
| 35 |
34
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( { 𝐴 , 𝐴 } ∈ 𝐸 → 𝐴 = 𝐵 ) ) |
| 36 |
35
|
com12 |
⊢ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐵 ) ) |
| 37 |
36
|
2a1i |
⊢ ( 𝑦 = 𝐵 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐵 ) ) ) ) |
| 38 |
|
preq2 |
⊢ ( 𝑦 = 𝐵 → { 𝐴 , 𝑦 } = { 𝐴 , 𝐵 } ) |
| 39 |
38
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( { 𝐴 , 𝑦 } ∈ 𝐸 ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
| 40 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐵 ) ) |
| 41 |
40
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ↔ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐵 ) ) ) |
| 42 |
41
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ↔ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐵 ) ) ) ) |
| 43 |
37 39 42
|
3imtr4d |
⊢ ( 𝑦 = 𝐵 → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ) ) |
| 44 |
26 43
|
jaoi |
⊢ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ) ) |
| 45 |
|
eqeq1 |
⊢ ( 𝑤 = 𝐴 → ( 𝑤 = 𝑦 ↔ 𝐴 = 𝑦 ) ) |
| 46 |
45
|
imbi2d |
⊢ ( 𝑤 = 𝐴 → ( ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ↔ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ) |
| 47 |
5 46
|
imbi12d |
⊢ ( 𝑤 = 𝐴 → ( ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ↔ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ) ) |
| 48 |
47
|
imbi2d |
⊢ ( 𝑤 = 𝐴 → ( ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ↔ ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ) ) ) |
| 49 |
44 48
|
imbitrrid |
⊢ ( 𝑤 = 𝐴 → ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) ) |
| 50 |
30
|
pm2.24i |
⊢ ( ¬ 𝐴 = 𝐴 → 𝐵 = 𝐴 ) |
| 51 |
29 50
|
sylbi |
⊢ ( 𝐴 ≠ 𝐴 → 𝐵 = 𝐴 ) |
| 52 |
28 51
|
syl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐵 = 𝐴 ) |
| 53 |
52
|
ex |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { 𝐴 , 𝐴 } ∈ 𝐸 → 𝐵 = 𝐴 ) ) |
| 54 |
53
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( { 𝐴 , 𝐴 } ∈ 𝐸 → 𝐵 = 𝐴 ) ) |
| 55 |
54
|
com12 |
⊢ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐴 ) ) |
| 56 |
55
|
a1i13 |
⊢ ( 𝑦 = 𝐴 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐴 ) ) ) ) |
| 57 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐴 ) ) |
| 58 |
57
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ↔ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐴 ) ) ) |
| 59 |
58
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐴 ) ) ) ) |
| 60 |
56 22 59
|
3imtr4d |
⊢ ( 𝑦 = 𝐴 → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ) ) |
| 61 |
|
eqidd |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐵 ) |
| 62 |
61
|
a1i |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐵 ) ) |
| 63 |
62
|
a1i13 |
⊢ ( 𝑦 = 𝐵 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐵 ) ) ) ) |
| 64 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐵 ) ) |
| 65 |
64
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ↔ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐵 ) ) ) |
| 66 |
65
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐵 ) ) ) ) |
| 67 |
63 39 66
|
3imtr4d |
⊢ ( 𝑦 = 𝐵 → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ) ) |
| 68 |
60 67
|
jaoi |
⊢ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ) ) |
| 69 |
|
eqeq1 |
⊢ ( 𝑤 = 𝐵 → ( 𝑤 = 𝑦 ↔ 𝐵 = 𝑦 ) ) |
| 70 |
69
|
imbi2d |
⊢ ( 𝑤 = 𝐵 → ( ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ↔ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ) |
| 71 |
7 70
|
imbi12d |
⊢ ( 𝑤 = 𝐵 → ( ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ) ) |
| 72 |
71
|
imbi2d |
⊢ ( 𝑤 = 𝐵 → ( ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ↔ ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ) ) ) |
| 73 |
68 72
|
imbitrrid |
⊢ ( 𝑤 = 𝐵 → ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) ) |
| 74 |
49 73
|
jaoi |
⊢ ( ( 𝑤 = 𝐴 ∨ 𝑤 = 𝐵 ) → ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) ) |
| 75 |
74
|
com3l |
⊢ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( ( 𝑤 = 𝐴 ∨ 𝑤 = 𝐵 ) → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) ) |
| 76 |
17 75
|
sylbi |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 } → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( ( 𝑤 = 𝐴 ∨ 𝑤 = 𝐵 ) → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) ) |
| 77 |
76
|
imp |
⊢ ( ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) → ( ( 𝑤 = 𝐴 ∨ 𝑤 = 𝐵 ) → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) |
| 78 |
77
|
com3l |
⊢ ( ( 𝑤 = 𝐴 ∨ 𝑤 = 𝐵 ) → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) |
| 79 |
15 78
|
sylbi |
⊢ ( 𝑤 ∈ { 𝐴 , 𝐵 } → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) |
| 80 |
79
|
imp31 |
⊢ ( ( ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ∧ ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) ) → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) |
| 81 |
80
|
com12 |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( ( ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ∧ ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) ) → 𝑤 = 𝑦 ) ) |
| 82 |
81
|
alrimivv |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∀ 𝑤 ∀ 𝑦 ( ( ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ∧ ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) ) → 𝑤 = 𝑦 ) ) |
| 83 |
|
eleq1w |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ { 𝐴 , 𝐵 } ↔ 𝑦 ∈ { 𝐴 , 𝐵 } ) ) |
| 84 |
|
preq2 |
⊢ ( 𝑤 = 𝑦 → { 𝐴 , 𝑤 } = { 𝐴 , 𝑦 } ) |
| 85 |
84
|
eleq1d |
⊢ ( 𝑤 = 𝑦 → ( { 𝐴 , 𝑤 } ∈ 𝐸 ↔ { 𝐴 , 𝑦 } ∈ 𝐸 ) ) |
| 86 |
83 85
|
anbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ↔ ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) ) ) |
| 87 |
86
|
eu4 |
⊢ ( ∃! 𝑤 ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ↔ ( ∃ 𝑤 ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ∧ ∀ 𝑤 ∀ 𝑦 ( ( ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ∧ ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) ) → 𝑤 = 𝑦 ) ) ) |
| 88 |
13 82 87
|
sylanbrc |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∃! 𝑤 ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ) |
| 89 |
|
df-reu |
⊢ ( ∃! 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ↔ ∃! 𝑤 ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ) |
| 90 |
88 89
|
sylibr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∃! 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ) |
| 91 |
90
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ∃! 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ) ) |