Step |
Hyp |
Ref |
Expression |
1 |
|
3vfriswmgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
3vfriswmgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
animorr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( { 𝐴 , 𝐴 } ∈ 𝐸 ∨ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
4 |
|
preq2 |
⊢ ( 𝑤 = 𝐴 → { 𝐴 , 𝑤 } = { 𝐴 , 𝐴 } ) |
5 |
4
|
eleq1d |
⊢ ( 𝑤 = 𝐴 → ( { 𝐴 , 𝑤 } ∈ 𝐸 ↔ { 𝐴 , 𝐴 } ∈ 𝐸 ) ) |
6 |
|
preq2 |
⊢ ( 𝑤 = 𝐵 → { 𝐴 , 𝑤 } = { 𝐴 , 𝐵 } ) |
7 |
6
|
eleq1d |
⊢ ( 𝑤 = 𝐵 → ( { 𝐴 , 𝑤 } ∈ 𝐸 ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
8 |
5 7
|
rexprg |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ∃ 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ↔ ( { 𝐴 , 𝐴 } ∈ 𝐸 ∨ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) → ( ∃ 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ↔ ( { 𝐴 , 𝐴 } ∈ 𝐸 ∨ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( ∃ 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ↔ ( { 𝐴 , 𝐴 } ∈ 𝐸 ∨ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) ) |
11 |
3 10
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∃ 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ) |
12 |
|
df-rex |
⊢ ( ∃ 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ↔ ∃ 𝑤 ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ) |
13 |
11 12
|
sylib |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∃ 𝑤 ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ) |
14 |
|
vex |
⊢ 𝑤 ∈ V |
15 |
14
|
elpr |
⊢ ( 𝑤 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑤 = 𝐴 ∨ 𝑤 = 𝐵 ) ) |
16 |
|
vex |
⊢ 𝑦 ∈ V |
17 |
16
|
elpr |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) |
18 |
|
eqidd |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐴 ) |
19 |
18
|
a1i |
⊢ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐴 ) ) |
20 |
19
|
a1i13 |
⊢ ( 𝑦 = 𝐴 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐴 ) ) ) ) |
21 |
|
preq2 |
⊢ ( 𝑦 = 𝐴 → { 𝐴 , 𝑦 } = { 𝐴 , 𝐴 } ) |
22 |
21
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( { 𝐴 , 𝑦 } ∈ 𝐸 ↔ { 𝐴 , 𝐴 } ∈ 𝐸 ) ) |
23 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐴 ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ↔ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐴 ) ) ) |
25 |
24
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ↔ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐴 ) ) ) ) |
26 |
20 22 25
|
3imtr4d |
⊢ ( 𝑦 = 𝐴 → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ) ) |
27 |
2
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐴 ≠ 𝐴 ) |
28 |
27
|
adantll |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐴 ≠ 𝐴 ) |
29 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐴 ) |
30 |
|
eqid |
⊢ 𝐴 = 𝐴 |
31 |
30
|
pm2.24i |
⊢ ( ¬ 𝐴 = 𝐴 → 𝐴 = 𝐵 ) |
32 |
29 31
|
sylbi |
⊢ ( 𝐴 ≠ 𝐴 → 𝐴 = 𝐵 ) |
33 |
28 32
|
syl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐴 = 𝐵 ) |
34 |
33
|
ex |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { 𝐴 , 𝐴 } ∈ 𝐸 → 𝐴 = 𝐵 ) ) |
35 |
34
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( { 𝐴 , 𝐴 } ∈ 𝐸 → 𝐴 = 𝐵 ) ) |
36 |
35
|
com12 |
⊢ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐵 ) ) |
37 |
36
|
2a1i |
⊢ ( 𝑦 = 𝐵 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐵 ) ) ) ) |
38 |
|
preq2 |
⊢ ( 𝑦 = 𝐵 → { 𝐴 , 𝑦 } = { 𝐴 , 𝐵 } ) |
39 |
38
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( { 𝐴 , 𝑦 } ∈ 𝐸 ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
40 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐵 ) ) |
41 |
40
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ↔ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐵 ) ) ) |
42 |
41
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ↔ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝐵 ) ) ) ) |
43 |
37 39 42
|
3imtr4d |
⊢ ( 𝑦 = 𝐵 → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ) ) |
44 |
26 43
|
jaoi |
⊢ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ) ) |
45 |
|
eqeq1 |
⊢ ( 𝑤 = 𝐴 → ( 𝑤 = 𝑦 ↔ 𝐴 = 𝑦 ) ) |
46 |
45
|
imbi2d |
⊢ ( 𝑤 = 𝐴 → ( ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ↔ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ) |
47 |
5 46
|
imbi12d |
⊢ ( 𝑤 = 𝐴 → ( ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ↔ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ) ) |
48 |
47
|
imbi2d |
⊢ ( 𝑤 = 𝐴 → ( ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ↔ ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 = 𝑦 ) ) ) ) ) |
49 |
44 48
|
syl5ibr |
⊢ ( 𝑤 = 𝐴 → ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) ) |
50 |
30
|
pm2.24i |
⊢ ( ¬ 𝐴 = 𝐴 → 𝐵 = 𝐴 ) |
51 |
29 50
|
sylbi |
⊢ ( 𝐴 ≠ 𝐴 → 𝐵 = 𝐴 ) |
52 |
28 51
|
syl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐵 = 𝐴 ) |
53 |
52
|
ex |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { 𝐴 , 𝐴 } ∈ 𝐸 → 𝐵 = 𝐴 ) ) |
54 |
53
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( { 𝐴 , 𝐴 } ∈ 𝐸 → 𝐵 = 𝐴 ) ) |
55 |
54
|
com12 |
⊢ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐴 ) ) |
56 |
55
|
a1i13 |
⊢ ( 𝑦 = 𝐴 → ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐴 ) ) ) ) |
57 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐴 ) ) |
58 |
57
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ↔ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐴 ) ) ) |
59 |
58
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐴 ) ) ) ) |
60 |
56 22 59
|
3imtr4d |
⊢ ( 𝑦 = 𝐴 → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ) ) |
61 |
|
eqidd |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐵 ) |
62 |
61
|
a1i |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐵 ) ) |
63 |
62
|
a1i13 |
⊢ ( 𝑦 = 𝐵 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐵 ) ) ) ) |
64 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐵 ) ) |
65 |
64
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ↔ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐵 ) ) ) |
66 |
65
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐵 ) ) ) ) |
67 |
63 39 66
|
3imtr4d |
⊢ ( 𝑦 = 𝐵 → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ) ) |
68 |
60 67
|
jaoi |
⊢ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ) ) |
69 |
|
eqeq1 |
⊢ ( 𝑤 = 𝐵 → ( 𝑤 = 𝑦 ↔ 𝐵 = 𝑦 ) ) |
70 |
69
|
imbi2d |
⊢ ( 𝑤 = 𝐵 → ( ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ↔ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ) |
71 |
7 70
|
imbi12d |
⊢ ( 𝑤 = 𝐵 → ( ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ) ) |
72 |
71
|
imbi2d |
⊢ ( 𝑤 = 𝐵 → ( ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ↔ ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝑦 ) ) ) ) ) |
73 |
68 72
|
syl5ibr |
⊢ ( 𝑤 = 𝐵 → ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) ) |
74 |
49 73
|
jaoi |
⊢ ( ( 𝑤 = 𝐴 ∨ 𝑤 = 𝐵 ) → ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) ) |
75 |
74
|
com3l |
⊢ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( ( 𝑤 = 𝐴 ∨ 𝑤 = 𝐵 ) → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) ) |
76 |
17 75
|
sylbi |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 } → ( { 𝐴 , 𝑦 } ∈ 𝐸 → ( ( 𝑤 = 𝐴 ∨ 𝑤 = 𝐵 ) → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) ) |
77 |
76
|
imp |
⊢ ( ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) → ( ( 𝑤 = 𝐴 ∨ 𝑤 = 𝐵 ) → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) |
78 |
77
|
com3l |
⊢ ( ( 𝑤 = 𝐴 ∨ 𝑤 = 𝐵 ) → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) |
79 |
15 78
|
sylbi |
⊢ ( 𝑤 ∈ { 𝐴 , 𝐵 } → ( { 𝐴 , 𝑤 } ∈ 𝐸 → ( ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) ) ) |
80 |
79
|
imp31 |
⊢ ( ( ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ∧ ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) ) → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝑤 = 𝑦 ) ) |
81 |
80
|
com12 |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( ( ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ∧ ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) ) → 𝑤 = 𝑦 ) ) |
82 |
81
|
alrimivv |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∀ 𝑤 ∀ 𝑦 ( ( ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ∧ ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) ) → 𝑤 = 𝑦 ) ) |
83 |
|
eleq1w |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ { 𝐴 , 𝐵 } ↔ 𝑦 ∈ { 𝐴 , 𝐵 } ) ) |
84 |
|
preq2 |
⊢ ( 𝑤 = 𝑦 → { 𝐴 , 𝑤 } = { 𝐴 , 𝑦 } ) |
85 |
84
|
eleq1d |
⊢ ( 𝑤 = 𝑦 → ( { 𝐴 , 𝑤 } ∈ 𝐸 ↔ { 𝐴 , 𝑦 } ∈ 𝐸 ) ) |
86 |
83 85
|
anbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ↔ ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) ) ) |
87 |
86
|
eu4 |
⊢ ( ∃! 𝑤 ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ↔ ( ∃ 𝑤 ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ∧ ∀ 𝑤 ∀ 𝑦 ( ( ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ∧ ( 𝑦 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑦 } ∈ 𝐸 ) ) → 𝑤 = 𝑦 ) ) ) |
88 |
13 82 87
|
sylanbrc |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∃! 𝑤 ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ) |
89 |
|
df-reu |
⊢ ( ∃! 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ↔ ∃! 𝑤 ( 𝑤 ∈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝑤 } ∈ 𝐸 ) ) |
90 |
88 89
|
sylibr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∃! 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ) |
91 |
90
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ∃! 𝑤 ∈ { 𝐴 , 𝐵 } { 𝐴 , 𝑤 } ∈ 𝐸 ) ) |