| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3wlkd.p | ⊢ 𝑃  =  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | 
						
							| 2 |  | 3wlkd.f | ⊢ 𝐹  =  〈“ 𝐽 𝐾 𝐿 ”〉 | 
						
							| 3 |  | 3wlkd.s | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) ) ) | 
						
							| 4 |  | 3wlkd.n | ⊢ ( 𝜑  →  ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶 )  ∧  ( 𝐵  ≠  𝐶  ∧  𝐵  ≠  𝐷 )  ∧  𝐶  ≠  𝐷 ) ) | 
						
							| 5 |  | 3wlkd.e | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ 𝐽 )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ 𝐾 )  ∧  { 𝐶 ,  𝐷 }  ⊆  ( 𝐼 ‘ 𝐿 ) ) ) | 
						
							| 6 |  | 3wlkd.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 7 |  | 3wlkd.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 8 |  | s4cli | ⊢ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉  ∈  Word  V | 
						
							| 9 | 1 8 | eqeltri | ⊢ 𝑃  ∈  Word  V | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  𝑃  ∈  Word  V ) | 
						
							| 11 |  | s3cli | ⊢ 〈“ 𝐽 𝐾 𝐿 ”〉  ∈  Word  V | 
						
							| 12 | 2 11 | eqeltri | ⊢ 𝐹  ∈  Word  V | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  𝐹  ∈  Word  V ) | 
						
							| 14 | 1 2 | 3wlkdlem1 | ⊢ ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) ) | 
						
							| 16 | 1 2 3 4 5 | 3wlkdlem10 | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 17 | 1 2 3 4 | 3wlkdlem5 | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 18 | 6 | 1vgrex | ⊢ ( 𝐴  ∈  𝑉  →  𝐺  ∈  V ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) )  →  𝐺  ∈  V ) | 
						
							| 20 | 3 19 | syl | ⊢ ( 𝜑  →  𝐺  ∈  V ) | 
						
							| 21 | 1 2 3 | 3wlkdlem4 | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 )  ∈  𝑉 ) | 
						
							| 22 | 10 13 15 16 17 20 6 7 21 | wlkd | ⊢ ( 𝜑  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |