Metamath Proof Explorer


Theorem 3wlkdlem1

Description: Lemma 1 for 3wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩
3wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 𝐿 ”⟩
Assertion 3wlkdlem1 ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 )

Proof

Step Hyp Ref Expression
1 3wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩
2 3wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 𝐿 ”⟩
3 1 fveq2i ( ♯ ‘ 𝑃 ) = ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ )
4 s4len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) = 4
5 df-4 4 = ( 3 + 1 )
6 4 5 eqtri ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) = ( 3 + 1 )
7 2 fveq2i ( ♯ ‘ 𝐹 ) = ( ♯ ‘ ⟨“ 𝐽 𝐾 𝐿 ”⟩ )
8 s3len ( ♯ ‘ ⟨“ 𝐽 𝐾 𝐿 ”⟩ ) = 3
9 7 8 eqtr2i 3 = ( ♯ ‘ 𝐹 )
10 9 oveq1i ( 3 + 1 ) = ( ( ♯ ‘ 𝐹 ) + 1 )
11 6 10 eqtri ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) = ( ( ♯ ‘ 𝐹 ) + 1 )
12 3 11 eqtri ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 )