Metamath Proof Explorer


Theorem 3wlkdlem2

Description: Lemma 2 for 3wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩
3wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 𝐿 ”⟩
Assertion 3wlkdlem2 ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 , 2 }

Proof

Step Hyp Ref Expression
1 3wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩
2 3wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 𝐿 ”⟩
3 2 fveq2i ( ♯ ‘ 𝐹 ) = ( ♯ ‘ ⟨“ 𝐽 𝐾 𝐿 ”⟩ )
4 s3len ( ♯ ‘ ⟨“ 𝐽 𝐾 𝐿 ”⟩ ) = 3
5 3 4 eqtri ( ♯ ‘ 𝐹 ) = 3
6 5 oveq2i ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 3 )
7 fzo0to3tp ( 0 ..^ 3 ) = { 0 , 1 , 2 }
8 6 7 eqtri ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 , 2 }