Step |
Hyp |
Ref |
Expression |
1 |
|
3wlkd.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 |
2 |
|
3wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 |
3 |
|
3wlkd.s |
⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) |
4 |
1
|
fveq1i |
⊢ ( 𝑃 ‘ 0 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 0 ) |
5 |
|
s4fv0 |
⊢ ( 𝐴 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 0 ) = 𝐴 ) |
6 |
4 5
|
syl5eq |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑃 ‘ 0 ) = 𝐴 ) |
7 |
1
|
fveq1i |
⊢ ( 𝑃 ‘ 1 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 1 ) |
8 |
|
s4fv1 |
⊢ ( 𝐵 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 1 ) = 𝐵 ) |
9 |
7 8
|
syl5eq |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝑃 ‘ 1 ) = 𝐵 ) |
10 |
6 9
|
anim12i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ) |
11 |
1
|
fveq1i |
⊢ ( 𝑃 ‘ 2 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 2 ) |
12 |
|
s4fv2 |
⊢ ( 𝐶 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 2 ) = 𝐶 ) |
13 |
11 12
|
syl5eq |
⊢ ( 𝐶 ∈ 𝑉 → ( 𝑃 ‘ 2 ) = 𝐶 ) |
14 |
1
|
fveq1i |
⊢ ( 𝑃 ‘ 3 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) |
15 |
|
s4fv3 |
⊢ ( 𝐷 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) = 𝐷 ) |
16 |
14 15
|
syl5eq |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝑃 ‘ 3 ) = 𝐷 ) |
17 |
13 16
|
anim12i |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) |
18 |
10 17
|
anim12i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ) |
19 |
3 18
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ) |