Step |
Hyp |
Ref |
Expression |
1 |
|
3wlkd.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 |
2 |
|
3wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 |
3 |
|
3wlkd.s |
⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) |
4 |
|
3wlkd.n |
⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) |
5 |
|
3wlkd.e |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) |
6 |
1 2 3
|
3wlkdlem3 |
⊢ ( 𝜑 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ) |
7 |
|
preq12 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { 𝐴 , 𝐵 } ) |
8 |
7
|
sseq1d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) ↔ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
9 |
8
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) ↔ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
10 |
|
preq12 |
⊢ ( ( ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { 𝐵 , 𝐶 } ) |
11 |
10
|
ad2ant2lr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { 𝐵 , 𝐶 } ) |
12 |
11
|
sseq1d |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ 𝐾 ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
13 |
|
preq12 |
⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } = { 𝐶 , 𝐷 } ) |
14 |
13
|
sseq1d |
⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → ( { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) ↔ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) ↔ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) |
16 |
9 12 15
|
3anbi123d |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) ) ↔ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) ) |
17 |
5 16
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) ) |
18 |
6 17
|
mpd |
⊢ ( 𝜑 → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) |
19 |
|
fvex |
⊢ ( 𝑃 ‘ 0 ) ∈ V |
20 |
|
fvex |
⊢ ( 𝑃 ‘ 1 ) ∈ V |
21 |
19 20
|
prss |
⊢ ( ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐽 ) ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
22 |
|
simpl |
⊢ ( ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐽 ) ) → ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ) |
23 |
21 22
|
sylbir |
⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) → ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ) |
24 |
|
fvex |
⊢ ( 𝑃 ‘ 2 ) ∈ V |
25 |
20 24
|
prss |
⊢ ( ( ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ∧ ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐾 ) ) ↔ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ 𝐾 ) ) |
26 |
|
simpl |
⊢ ( ( ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ∧ ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐾 ) ) → ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ) |
27 |
25 26
|
sylbir |
⊢ ( { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ 𝐾 ) → ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ) |
28 |
|
fvex |
⊢ ( 𝑃 ‘ 3 ) ∈ V |
29 |
24 28
|
prss |
⊢ ( ( ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ∧ ( 𝑃 ‘ 3 ) ∈ ( 𝐼 ‘ 𝐿 ) ) ↔ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) ) |
30 |
|
simpl |
⊢ ( ( ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ∧ ( 𝑃 ‘ 3 ) ∈ ( 𝐼 ‘ 𝐿 ) ) → ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ) |
31 |
29 30
|
sylbir |
⊢ ( { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) → ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ) |
32 |
23 27 31
|
3anim123i |
⊢ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) ) → ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ∧ ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ) ) |
33 |
18 32
|
syl |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ∧ ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ) ) |
34 |
|
eleq1 |
⊢ ( ( 𝑃 ‘ 0 ) = 𝐴 → ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ↔ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ↔ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ↔ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ) |
37 |
|
eleq1 |
⊢ ( ( 𝑃 ‘ 1 ) = 𝐵 → ( ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ↔ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ↔ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |
39 |
38
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ↔ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |
40 |
|
eleq1 |
⊢ ( ( 𝑃 ‘ 2 ) = 𝐶 → ( ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ↔ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → ( ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ↔ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ) |
42 |
41
|
adantl |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ↔ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ) |
43 |
36 39 42
|
3anbi123d |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ∧ ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ) ↔ ( 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ) ) |
44 |
43
|
bicomd |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ↔ ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ∧ ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ) ) ) |
45 |
6 44
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ↔ ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ∧ ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ) ) ) |
46 |
33 45
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ) |