Step |
Hyp |
Ref |
Expression |
1 |
|
3wlkd.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 |
2 |
|
3wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 |
3 |
|
3wlkd.s |
⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) |
4 |
|
3wlkd.n |
⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) |
5 |
|
3wlkd.e |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) |
6 |
1 2 3 4 5
|
3wlkdlem6 |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ) |
7 |
|
elfvex |
⊢ ( 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) → 𝐽 ∈ V ) |
8 |
|
elfvex |
⊢ ( 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) → 𝐾 ∈ V ) |
9 |
|
elfvex |
⊢ ( 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) → 𝐿 ∈ V ) |
10 |
7 8 9
|
3anim123i |
⊢ ( ( 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) → ( 𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐿 ∈ V ) ) |
11 |
6 10
|
syl |
⊢ ( 𝜑 → ( 𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐿 ∈ V ) ) |