Metamath Proof Explorer


Theorem 3wlkdlem9

Description: Lemma 9 for 3wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩
3wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 𝐿 ”⟩
3wlkd.s ( 𝜑 → ( ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝐶𝑉𝐷𝑉 ) ) )
3wlkd.n ( 𝜑 → ( ( 𝐴𝐵𝐴𝐶 ) ∧ ( 𝐵𝐶𝐵𝐷 ) ∧ 𝐶𝐷 ) )
3wlkd.e ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼𝐿 ) ) )
Assertion 3wlkdlem9 ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) )

Proof

Step Hyp Ref Expression
1 3wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩
2 3wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 𝐿 ”⟩
3 3wlkd.s ( 𝜑 → ( ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝐶𝑉𝐷𝑉 ) ) )
4 3wlkd.n ( 𝜑 → ( ( 𝐴𝐵𝐴𝐶 ) ∧ ( 𝐵𝐶𝐵𝐷 ) ∧ 𝐶𝐷 ) )
5 3wlkd.e ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼𝐿 ) ) )
6 1 2 3 4 5 3wlkdlem8 ( 𝜑 → ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ∧ ( 𝐹 ‘ 2 ) = 𝐿 ) )
7 fveq2 ( ( 𝐹 ‘ 0 ) = 𝐽 → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝐼𝐽 ) )
8 7 sseq2d ( ( 𝐹 ‘ 0 ) = 𝐽 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ↔ { 𝐴 , 𝐵 } ⊆ ( 𝐼𝐽 ) ) )
9 8 3ad2ant1 ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ∧ ( 𝐹 ‘ 2 ) = 𝐿 ) → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ↔ { 𝐴 , 𝐵 } ⊆ ( 𝐼𝐽 ) ) )
10 fveq2 ( ( 𝐹 ‘ 1 ) = 𝐾 → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = ( 𝐼𝐾 ) )
11 10 sseq2d ( ( 𝐹 ‘ 1 ) = 𝐾 → ( { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼𝐾 ) ) )
12 11 3ad2ant2 ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ∧ ( 𝐹 ‘ 2 ) = 𝐿 ) → ( { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼𝐾 ) ) )
13 fveq2 ( ( 𝐹 ‘ 2 ) = 𝐿 → ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) = ( 𝐼𝐿 ) )
14 13 sseq2d ( ( 𝐹 ‘ 2 ) = 𝐿 → ( { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ↔ { 𝐶 , 𝐷 } ⊆ ( 𝐼𝐿 ) ) )
15 14 3ad2ant3 ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ∧ ( 𝐹 ‘ 2 ) = 𝐿 ) → ( { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ↔ { 𝐶 , 𝐷 } ⊆ ( 𝐼𝐿 ) ) )
16 9 12 15 3anbi123d ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ∧ ( 𝐹 ‘ 2 ) = 𝐿 ) → ( ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ↔ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼𝐿 ) ) ) )
17 6 16 syl ( 𝜑 → ( ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ↔ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼𝐿 ) ) ) )
18 5 17 mpbird ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) )