Metamath Proof Explorer


Theorem 3xpexg

Description: The Cartesian product of three sets is a set. (Contributed by Alexander van der Vekens, 21-Feb-2018)

Ref Expression
Assertion 3xpexg ( 𝑉𝑊 → ( ( 𝑉 × 𝑉 ) × 𝑉 ) ∈ V )

Proof

Step Hyp Ref Expression
1 xpexg ( ( 𝑉𝑊𝑉𝑊 ) → ( 𝑉 × 𝑉 ) ∈ V )
2 1 anidms ( 𝑉𝑊 → ( 𝑉 × 𝑉 ) ∈ V )
3 xpexg ( ( ( 𝑉 × 𝑉 ) ∈ V ∧ 𝑉𝑊 ) → ( ( 𝑉 × 𝑉 ) × 𝑉 ) ∈ V )
4 2 3 mpancom ( 𝑉𝑊 → ( ( 𝑉 × 𝑉 ) × 𝑉 ) ∈ V )