Description: Lemma for 4001prm . Calculate the GCD of 2 ^ 8 0 0 - 1 == 2 3 1 0 with N = 4 0 0 1 . (Contributed by Mario Carneiro, 3-Mar-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 4001prm.1 | ⊢ 𝑁 = ; ; ; 4 0 0 1 | |
Assertion | 4001lem4 | ⊢ ( ( ( 2 ↑ ; ; 8 0 0 ) − 1 ) gcd 𝑁 ) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4001prm.1 | ⊢ 𝑁 = ; ; ; 4 0 0 1 | |
2 | 2nn | ⊢ 2 ∈ ℕ | |
3 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
4 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
5 | 3 4 | deccl | ⊢ ; 8 0 ∈ ℕ0 |
6 | 5 4 | deccl | ⊢ ; ; 8 0 0 ∈ ℕ0 |
7 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ ; ; 8 0 0 ∈ ℕ0 ) → ( 2 ↑ ; ; 8 0 0 ) ∈ ℕ ) | |
8 | 2 6 7 | mp2an | ⊢ ( 2 ↑ ; ; 8 0 0 ) ∈ ℕ |
9 | nnm1nn0 | ⊢ ( ( 2 ↑ ; ; 8 0 0 ) ∈ ℕ → ( ( 2 ↑ ; ; 8 0 0 ) − 1 ) ∈ ℕ0 ) | |
10 | 8 9 | ax-mp | ⊢ ( ( 2 ↑ ; ; 8 0 0 ) − 1 ) ∈ ℕ0 |
11 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
12 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
13 | 11 12 | deccl | ⊢ ; 2 3 ∈ ℕ0 |
14 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
15 | 13 14 | deccl | ⊢ ; ; 2 3 1 ∈ ℕ0 |
16 | 15 4 | deccl | ⊢ ; ; ; 2 3 1 0 ∈ ℕ0 |
17 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
18 | 17 4 | deccl | ⊢ ; 4 0 ∈ ℕ0 |
19 | 18 4 | deccl | ⊢ ; ; 4 0 0 ∈ ℕ0 |
20 | 1nn | ⊢ 1 ∈ ℕ | |
21 | 19 20 | decnncl | ⊢ ; ; ; 4 0 0 1 ∈ ℕ |
22 | 1 21 | eqeltri | ⊢ 𝑁 ∈ ℕ |
23 | 1 | 4001lem2 | ⊢ ( ( 2 ↑ ; ; 8 0 0 ) mod 𝑁 ) = ( ; ; ; 2 3 1 1 mod 𝑁 ) |
24 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
25 | eqid | ⊢ ; ; ; 2 3 1 0 = ; ; ; 2 3 1 0 | |
26 | 15 4 24 25 | decsuc | ⊢ ( ; ; ; 2 3 1 0 + 1 ) = ; ; ; 2 3 1 1 |
27 | 22 8 14 16 23 26 | modsubi | ⊢ ( ( ( 2 ↑ ; ; 8 0 0 ) − 1 ) mod 𝑁 ) = ( ; ; ; 2 3 1 0 mod 𝑁 ) |
28 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
29 | 14 28 | deccl | ⊢ ; 1 6 ∈ ℕ0 |
30 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
31 | 29 30 | deccl | ⊢ ; ; 1 6 9 ∈ ℕ0 |
32 | 31 14 | deccl | ⊢ ; ; ; 1 6 9 1 ∈ ℕ0 |
33 | 28 14 | deccl | ⊢ ; 6 1 ∈ ℕ0 |
34 | 33 30 | deccl | ⊢ ; ; 6 1 9 ∈ ℕ0 |
35 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
36 | 17 35 | deccl | ⊢ ; 4 5 ∈ ℕ0 |
37 | 36 12 | deccl | ⊢ ; ; 4 5 3 ∈ ℕ0 |
38 | 29 28 | deccl | ⊢ ; ; 1 6 6 ∈ ℕ0 |
39 | 14 11 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
40 | 39 14 | deccl | ⊢ ; ; 1 2 1 ∈ ℕ0 |
41 | 12 14 | deccl | ⊢ ; 3 1 ∈ ℕ0 |
42 | 14 17 | deccl | ⊢ ; 1 4 ∈ ℕ0 |
43 | 42 | nn0zi | ⊢ ; 1 4 ∈ ℤ |
44 | 12 | nn0zi | ⊢ 3 ∈ ℤ |
45 | gcdcom | ⊢ ( ( ; 1 4 ∈ ℤ ∧ 3 ∈ ℤ ) → ( ; 1 4 gcd 3 ) = ( 3 gcd ; 1 4 ) ) | |
46 | 43 44 45 | mp2an | ⊢ ( ; 1 4 gcd 3 ) = ( 3 gcd ; 1 4 ) |
47 | 3nn | ⊢ 3 ∈ ℕ | |
48 | 4cn | ⊢ 4 ∈ ℂ | |
49 | 3cn | ⊢ 3 ∈ ℂ | |
50 | 4t3e12 | ⊢ ( 4 · 3 ) = ; 1 2 | |
51 | 48 49 50 | mulcomli | ⊢ ( 3 · 4 ) = ; 1 2 |
52 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
53 | 14 11 11 51 52 | decaddi | ⊢ ( ( 3 · 4 ) + 2 ) = ; 1 4 |
54 | 2lt3 | ⊢ 2 < 3 | |
55 | 47 17 2 53 54 | ndvdsi | ⊢ ¬ 3 ∥ ; 1 4 |
56 | 3prm | ⊢ 3 ∈ ℙ | |
57 | coprm | ⊢ ( ( 3 ∈ ℙ ∧ ; 1 4 ∈ ℤ ) → ( ¬ 3 ∥ ; 1 4 ↔ ( 3 gcd ; 1 4 ) = 1 ) ) | |
58 | 56 43 57 | mp2an | ⊢ ( ¬ 3 ∥ ; 1 4 ↔ ( 3 gcd ; 1 4 ) = 1 ) |
59 | 55 58 | mpbi | ⊢ ( 3 gcd ; 1 4 ) = 1 |
60 | 46 59 | eqtri | ⊢ ( ; 1 4 gcd 3 ) = 1 |
61 | eqid | ⊢ ; 1 4 = ; 1 4 | |
62 | 12 | dec0h | ⊢ 3 = ; 0 3 |
63 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
64 | 63 24 | oveq12i | ⊢ ( ( 2 · 1 ) + ( 0 + 1 ) ) = ( 2 + 1 ) |
65 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
66 | 64 65 | eqtri | ⊢ ( ( 2 · 1 ) + ( 0 + 1 ) ) = 3 |
67 | 2cn | ⊢ 2 ∈ ℂ | |
68 | 4t2e8 | ⊢ ( 4 · 2 ) = 8 | |
69 | 48 67 68 | mulcomli | ⊢ ( 2 · 4 ) = 8 |
70 | 69 | oveq1i | ⊢ ( ( 2 · 4 ) + 3 ) = ( 8 + 3 ) |
71 | 8p3e11 | ⊢ ( 8 + 3 ) = ; 1 1 | |
72 | 70 71 | eqtri | ⊢ ( ( 2 · 4 ) + 3 ) = ; 1 1 |
73 | 14 17 4 12 61 62 11 14 14 66 72 | decma2c | ⊢ ( ( 2 · ; 1 4 ) + 3 ) = ; 3 1 |
74 | 11 12 42 60 73 | gcdi | ⊢ ( ; 3 1 gcd ; 1 4 ) = 1 |
75 | eqid | ⊢ ; 3 1 = ; 3 1 | |
76 | 49 | mulid2i | ⊢ ( 1 · 3 ) = 3 |
77 | ax-1cn | ⊢ 1 ∈ ℂ | |
78 | 77 | addid1i | ⊢ ( 1 + 0 ) = 1 |
79 | 76 78 | oveq12i | ⊢ ( ( 1 · 3 ) + ( 1 + 0 ) ) = ( 3 + 1 ) |
80 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
81 | 79 80 | eqtri | ⊢ ( ( 1 · 3 ) + ( 1 + 0 ) ) = 4 |
82 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
83 | 82 | oveq1i | ⊢ ( ( 1 · 1 ) + 4 ) = ( 1 + 4 ) |
84 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
85 | 48 77 84 | addcomli | ⊢ ( 1 + 4 ) = 5 |
86 | 35 | dec0h | ⊢ 5 = ; 0 5 |
87 | 83 85 86 | 3eqtri | ⊢ ( ( 1 · 1 ) + 4 ) = ; 0 5 |
88 | 12 14 14 17 75 61 14 35 4 81 87 | decma2c | ⊢ ( ( 1 · ; 3 1 ) + ; 1 4 ) = ; 4 5 |
89 | 14 42 41 74 88 | gcdi | ⊢ ( ; 4 5 gcd ; 3 1 ) = 1 |
90 | eqid | ⊢ ; 4 5 = ; 4 5 | |
91 | 69 80 | oveq12i | ⊢ ( ( 2 · 4 ) + ( 3 + 1 ) ) = ( 8 + 4 ) |
92 | 8p4e12 | ⊢ ( 8 + 4 ) = ; 1 2 | |
93 | 91 92 | eqtri | ⊢ ( ( 2 · 4 ) + ( 3 + 1 ) ) = ; 1 2 |
94 | 5cn | ⊢ 5 ∈ ℂ | |
95 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
96 | 94 67 95 | mulcomli | ⊢ ( 2 · 5 ) = ; 1 0 |
97 | 14 4 24 96 | decsuc | ⊢ ( ( 2 · 5 ) + 1 ) = ; 1 1 |
98 | 17 35 12 14 90 75 11 14 14 93 97 | decma2c | ⊢ ( ( 2 · ; 4 5 ) + ; 3 1 ) = ; ; 1 2 1 |
99 | 11 41 36 89 98 | gcdi | ⊢ ( ; ; 1 2 1 gcd ; 4 5 ) = 1 |
100 | eqid | ⊢ ; ; 1 2 1 = ; ; 1 2 1 | |
101 | eqid | ⊢ ; 1 2 = ; 1 2 | |
102 | 48 | addid1i | ⊢ ( 4 + 0 ) = 4 |
103 | 17 | dec0h | ⊢ 4 = ; 0 4 |
104 | 102 103 | eqtri | ⊢ ( 4 + 0 ) = ; 0 4 |
105 | 00id | ⊢ ( 0 + 0 ) = 0 | |
106 | 82 105 | oveq12i | ⊢ ( ( 1 · 1 ) + ( 0 + 0 ) ) = ( 1 + 0 ) |
107 | 106 78 | eqtri | ⊢ ( ( 1 · 1 ) + ( 0 + 0 ) ) = 1 |
108 | 67 | mulid2i | ⊢ ( 1 · 2 ) = 2 |
109 | 108 | oveq1i | ⊢ ( ( 1 · 2 ) + 4 ) = ( 2 + 4 ) |
110 | 4p2e6 | ⊢ ( 4 + 2 ) = 6 | |
111 | 48 67 110 | addcomli | ⊢ ( 2 + 4 ) = 6 |
112 | 28 | dec0h | ⊢ 6 = ; 0 6 |
113 | 109 111 112 | 3eqtri | ⊢ ( ( 1 · 2 ) + 4 ) = ; 0 6 |
114 | 14 11 4 17 101 104 14 28 4 107 113 | decma2c | ⊢ ( ( 1 · ; 1 2 ) + ( 4 + 0 ) ) = ; 1 6 |
115 | 82 | oveq1i | ⊢ ( ( 1 · 1 ) + 5 ) = ( 1 + 5 ) |
116 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
117 | 94 77 116 | addcomli | ⊢ ( 1 + 5 ) = 6 |
118 | 115 117 112 | 3eqtri | ⊢ ( ( 1 · 1 ) + 5 ) = ; 0 6 |
119 | 39 14 17 35 100 90 14 28 4 114 118 | decma2c | ⊢ ( ( 1 · ; ; 1 2 1 ) + ; 4 5 ) = ; ; 1 6 6 |
120 | 14 36 40 99 119 | gcdi | ⊢ ( ; ; 1 6 6 gcd ; ; 1 2 1 ) = 1 |
121 | eqid | ⊢ ; ; 1 6 6 = ; ; 1 6 6 | |
122 | eqid | ⊢ ; 1 6 = ; 1 6 | |
123 | 14 11 65 101 | decsuc | ⊢ ( ; 1 2 + 1 ) = ; 1 3 |
124 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
125 | 63 124 | oveq12i | ⊢ ( ( 2 · 1 ) + ( 1 + 1 ) ) = ( 2 + 2 ) |
126 | 125 52 | eqtri | ⊢ ( ( 2 · 1 ) + ( 1 + 1 ) ) = 4 |
127 | 6cn | ⊢ 6 ∈ ℂ | |
128 | 6t2e12 | ⊢ ( 6 · 2 ) = ; 1 2 | |
129 | 127 67 128 | mulcomli | ⊢ ( 2 · 6 ) = ; 1 2 |
130 | 3p2e5 | ⊢ ( 3 + 2 ) = 5 | |
131 | 49 67 130 | addcomli | ⊢ ( 2 + 3 ) = 5 |
132 | 14 11 12 129 131 | decaddi | ⊢ ( ( 2 · 6 ) + 3 ) = ; 1 5 |
133 | 14 28 14 12 122 123 11 35 14 126 132 | decma2c | ⊢ ( ( 2 · ; 1 6 ) + ( ; 1 2 + 1 ) ) = ; 4 5 |
134 | 14 11 65 129 | decsuc | ⊢ ( ( 2 · 6 ) + 1 ) = ; 1 3 |
135 | 29 28 39 14 121 100 11 12 14 133 134 | decma2c | ⊢ ( ( 2 · ; ; 1 6 6 ) + ; ; 1 2 1 ) = ; ; 4 5 3 |
136 | 11 40 38 120 135 | gcdi | ⊢ ( ; ; 4 5 3 gcd ; ; 1 6 6 ) = 1 |
137 | eqid | ⊢ ; ; 4 5 3 = ; ; 4 5 3 | |
138 | 29 | nn0cni | ⊢ ; 1 6 ∈ ℂ |
139 | 138 | addid1i | ⊢ ( ; 1 6 + 0 ) = ; 1 6 |
140 | 48 | mulid2i | ⊢ ( 1 · 4 ) = 4 |
141 | 140 124 | oveq12i | ⊢ ( ( 1 · 4 ) + ( 1 + 1 ) ) = ( 4 + 2 ) |
142 | 141 110 | eqtri | ⊢ ( ( 1 · 4 ) + ( 1 + 1 ) ) = 6 |
143 | 94 | mulid2i | ⊢ ( 1 · 5 ) = 5 |
144 | 143 | oveq1i | ⊢ ( ( 1 · 5 ) + 6 ) = ( 5 + 6 ) |
145 | 6p5e11 | ⊢ ( 6 + 5 ) = ; 1 1 | |
146 | 127 94 145 | addcomli | ⊢ ( 5 + 6 ) = ; 1 1 |
147 | 144 146 | eqtri | ⊢ ( ( 1 · 5 ) + 6 ) = ; 1 1 |
148 | 17 35 14 28 90 139 14 14 14 142 147 | decma2c | ⊢ ( ( 1 · ; 4 5 ) + ( ; 1 6 + 0 ) ) = ; 6 1 |
149 | 76 | oveq1i | ⊢ ( ( 1 · 3 ) + 6 ) = ( 3 + 6 ) |
150 | 6p3e9 | ⊢ ( 6 + 3 ) = 9 | |
151 | 127 49 150 | addcomli | ⊢ ( 3 + 6 ) = 9 |
152 | 30 | dec0h | ⊢ 9 = ; 0 9 |
153 | 149 151 152 | 3eqtri | ⊢ ( ( 1 · 3 ) + 6 ) = ; 0 9 |
154 | 36 12 29 28 137 121 14 30 4 148 153 | decma2c | ⊢ ( ( 1 · ; ; 4 5 3 ) + ; ; 1 6 6 ) = ; ; 6 1 9 |
155 | 14 38 37 136 154 | gcdi | ⊢ ( ; ; 6 1 9 gcd ; ; 4 5 3 ) = 1 |
156 | eqid | ⊢ ; ; 6 1 9 = ; ; 6 1 9 | |
157 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
158 | eqid | ⊢ ; 6 1 = ; 6 1 | |
159 | 5p2e7 | ⊢ ( 5 + 2 ) = 7 | |
160 | 17 35 11 90 159 | decaddi | ⊢ ( ; 4 5 + 2 ) = ; 4 7 |
161 | 102 | oveq2i | ⊢ ( ( 2 · 6 ) + ( 4 + 0 ) ) = ( ( 2 · 6 ) + 4 ) |
162 | 14 11 17 129 111 | decaddi | ⊢ ( ( 2 · 6 ) + 4 ) = ; 1 6 |
163 | 161 162 | eqtri | ⊢ ( ( 2 · 6 ) + ( 4 + 0 ) ) = ; 1 6 |
164 | 63 | oveq1i | ⊢ ( ( 2 · 1 ) + 7 ) = ( 2 + 7 ) |
165 | 7cn | ⊢ 7 ∈ ℂ | |
166 | 7p2e9 | ⊢ ( 7 + 2 ) = 9 | |
167 | 165 67 166 | addcomli | ⊢ ( 2 + 7 ) = 9 |
168 | 164 167 152 | 3eqtri | ⊢ ( ( 2 · 1 ) + 7 ) = ; 0 9 |
169 | 28 14 17 157 158 160 11 30 4 163 168 | decma2c | ⊢ ( ( 2 · ; 6 1 ) + ( ; 4 5 + 2 ) ) = ; ; 1 6 9 |
170 | 9cn | ⊢ 9 ∈ ℂ | |
171 | 9t2e18 | ⊢ ( 9 · 2 ) = ; 1 8 | |
172 | 170 67 171 | mulcomli | ⊢ ( 2 · 9 ) = ; 1 8 |
173 | 14 3 12 172 124 14 71 | decaddci | ⊢ ( ( 2 · 9 ) + 3 ) = ; 2 1 |
174 | 33 30 36 12 156 137 11 14 11 169 173 | decma2c | ⊢ ( ( 2 · ; ; 6 1 9 ) + ; ; 4 5 3 ) = ; ; ; 1 6 9 1 |
175 | 11 37 34 155 174 | gcdi | ⊢ ( ; ; ; 1 6 9 1 gcd ; ; 6 1 9 ) = 1 |
176 | eqid | ⊢ ; ; ; 1 6 9 1 = ; ; ; 1 6 9 1 | |
177 | eqid | ⊢ ; ; 1 6 9 = ; ; 1 6 9 | |
178 | 28 14 124 158 | decsuc | ⊢ ( ; 6 1 + 1 ) = ; 6 2 |
179 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
180 | 157 | dec0h | ⊢ 7 = ; 0 7 |
181 | 179 180 | eqtri | ⊢ ( 6 + 1 ) = ; 0 7 |
182 | 82 24 | oveq12i | ⊢ ( ( 1 · 1 ) + ( 0 + 1 ) ) = ( 1 + 1 ) |
183 | 182 124 | eqtri | ⊢ ( ( 1 · 1 ) + ( 0 + 1 ) ) = 2 |
184 | 127 | mulid2i | ⊢ ( 1 · 6 ) = 6 |
185 | 184 | oveq1i | ⊢ ( ( 1 · 6 ) + 7 ) = ( 6 + 7 ) |
186 | 7p6e13 | ⊢ ( 7 + 6 ) = ; 1 3 | |
187 | 165 127 186 | addcomli | ⊢ ( 6 + 7 ) = ; 1 3 |
188 | 185 187 | eqtri | ⊢ ( ( 1 · 6 ) + 7 ) = ; 1 3 |
189 | 14 28 4 157 122 181 14 12 14 183 188 | decma2c | ⊢ ( ( 1 · ; 1 6 ) + ( 6 + 1 ) ) = ; 2 3 |
190 | 170 | mulid2i | ⊢ ( 1 · 9 ) = 9 |
191 | 190 | oveq1i | ⊢ ( ( 1 · 9 ) + 2 ) = ( 9 + 2 ) |
192 | 9p2e11 | ⊢ ( 9 + 2 ) = ; 1 1 | |
193 | 191 192 | eqtri | ⊢ ( ( 1 · 9 ) + 2 ) = ; 1 1 |
194 | 29 30 28 11 177 178 14 14 14 189 193 | decma2c | ⊢ ( ( 1 · ; ; 1 6 9 ) + ( ; 6 1 + 1 ) ) = ; ; 2 3 1 |
195 | 82 | oveq1i | ⊢ ( ( 1 · 1 ) + 9 ) = ( 1 + 9 ) |
196 | 9p1e10 | ⊢ ( 9 + 1 ) = ; 1 0 | |
197 | 170 77 196 | addcomli | ⊢ ( 1 + 9 ) = ; 1 0 |
198 | 195 197 | eqtri | ⊢ ( ( 1 · 1 ) + 9 ) = ; 1 0 |
199 | 31 14 33 30 176 156 14 4 14 194 198 | decma2c | ⊢ ( ( 1 · ; ; ; 1 6 9 1 ) + ; ; 6 1 9 ) = ; ; ; 2 3 1 0 |
200 | 14 34 32 175 199 | gcdi | ⊢ ( ; ; ; 2 3 1 0 gcd ; ; ; 1 6 9 1 ) = 1 |
201 | eqid | ⊢ ; ; 2 3 1 = ; ; 2 3 1 | |
202 | 31 | nn0cni | ⊢ ; ; 1 6 9 ∈ ℂ |
203 | 202 | addid1i | ⊢ ( ; ; 1 6 9 + 0 ) = ; ; 1 6 9 |
204 | eqid | ⊢ ; 2 3 = ; 2 3 | |
205 | 14 28 179 122 | decsuc | ⊢ ( ; 1 6 + 1 ) = ; 1 7 |
206 | 108 124 | oveq12i | ⊢ ( ( 1 · 2 ) + ( 1 + 1 ) ) = ( 2 + 2 ) |
207 | 206 52 | eqtri | ⊢ ( ( 1 · 2 ) + ( 1 + 1 ) ) = 4 |
208 | 76 | oveq1i | ⊢ ( ( 1 · 3 ) + 7 ) = ( 3 + 7 ) |
209 | 7p3e10 | ⊢ ( 7 + 3 ) = ; 1 0 | |
210 | 165 49 209 | addcomli | ⊢ ( 3 + 7 ) = ; 1 0 |
211 | 208 210 | eqtri | ⊢ ( ( 1 · 3 ) + 7 ) = ; 1 0 |
212 | 11 12 14 157 204 205 14 4 14 207 211 | decma2c | ⊢ ( ( 1 · ; 2 3 ) + ( ; 1 6 + 1 ) ) = ; 4 0 |
213 | 13 14 29 30 201 203 14 4 14 212 198 | decma2c | ⊢ ( ( 1 · ; ; 2 3 1 ) + ( ; ; 1 6 9 + 0 ) ) = ; ; 4 0 0 |
214 | 77 | mul01i | ⊢ ( 1 · 0 ) = 0 |
215 | 214 | oveq1i | ⊢ ( ( 1 · 0 ) + 1 ) = ( 0 + 1 ) |
216 | 14 | dec0h | ⊢ 1 = ; 0 1 |
217 | 215 24 216 | 3eqtri | ⊢ ( ( 1 · 0 ) + 1 ) = ; 0 1 |
218 | 15 4 31 14 25 176 14 14 4 213 217 | decma2c | ⊢ ( ( 1 · ; ; ; 2 3 1 0 ) + ; ; ; 1 6 9 1 ) = ; ; ; 4 0 0 1 |
219 | 218 1 | eqtr4i | ⊢ ( ( 1 · ; ; ; 2 3 1 0 ) + ; ; ; 1 6 9 1 ) = 𝑁 |
220 | 14 32 16 200 219 | gcdi | ⊢ ( 𝑁 gcd ; ; ; 2 3 1 0 ) = 1 |
221 | 10 16 22 27 220 | gcdmodi | ⊢ ( ( ( 2 ↑ ; ; 8 0 0 ) − 1 ) gcd 𝑁 ) = 1 |