Description: 4001 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 4001prm.1 | ⊢ 𝑁 = ; ; ; 4 0 0 1 | |
| Assertion | 4001prm | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4001prm.1 | ⊢ 𝑁 = ; ; ; 4 0 0 1 | |
| 2 | 5prm | ⊢ 5 ∈ ℙ | |
| 3 | 8nn | ⊢ 8 ∈ ℕ | |
| 4 | 3 | decnncl2 | ⊢ ; 8 0 ∈ ℕ |
| 5 | 4 | decnncl2 | ⊢ ; ; 8 0 0 ∈ ℕ |
| 6 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 7 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 8 | 6 7 | deccl | ⊢ ; 4 0 ∈ ℕ0 |
| 9 | 8 7 | deccl | ⊢ ; ; 4 0 0 ∈ ℕ0 |
| 10 | 9 7 | deccl | ⊢ ; ; ; 4 0 0 0 ∈ ℕ0 |
| 11 | 10 | nn0cni | ⊢ ; ; ; 4 0 0 0 ∈ ℂ |
| 12 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 13 | 12 | addlidi | ⊢ ( 0 + 1 ) = 1 |
| 14 | eqid | ⊢ ; ; ; 4 0 0 0 = ; ; ; 4 0 0 0 | |
| 15 | 9 7 13 14 | decsuc | ⊢ ( ; ; ; 4 0 0 0 + 1 ) = ; ; ; 4 0 0 1 |
| 16 | 1 15 | eqtr4i | ⊢ 𝑁 = ( ; ; ; 4 0 0 0 + 1 ) |
| 17 | 11 12 16 | mvrraddi | ⊢ ( 𝑁 − 1 ) = ; ; ; 4 0 0 0 |
| 18 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 19 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 20 | 19 7 | deccl | ⊢ ; 8 0 ∈ ℕ0 |
| 21 | eqid | ⊢ ; ; 8 0 0 = ; ; 8 0 0 | |
| 22 | eqid | ⊢ ; 8 0 = ; 8 0 | |
| 23 | 8t5e40 | ⊢ ( 8 · 5 ) = ; 4 0 | |
| 24 | 5cn | ⊢ 5 ∈ ℂ | |
| 25 | 24 | mul02i | ⊢ ( 0 · 5 ) = 0 |
| 26 | 18 19 7 22 23 25 | decmul1 | ⊢ ( ; 8 0 · 5 ) = ; ; 4 0 0 |
| 27 | 18 20 7 21 26 25 | decmul1 | ⊢ ( ; ; 8 0 0 · 5 ) = ; ; ; 4 0 0 0 |
| 28 | 17 27 | eqtr4i | ⊢ ( 𝑁 − 1 ) = ( ; ; 8 0 0 · 5 ) |
| 29 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 30 | 9 29 | deccl | ⊢ ; ; ; 4 0 0 1 ∈ ℕ0 |
| 31 | 1 30 | eqeltri | ⊢ 𝑁 ∈ ℕ0 |
| 32 | 31 | nn0cni | ⊢ 𝑁 ∈ ℂ |
| 33 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 34 | 32 12 33 | mp2an | ⊢ ( ( 𝑁 − 1 ) + 1 ) = 𝑁 |
| 35 | 34 | eqcomi | ⊢ 𝑁 = ( ( 𝑁 − 1 ) + 1 ) |
| 36 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 37 | 2nn | ⊢ 2 ∈ ℕ | |
| 38 | 36 37 | decnncl | ⊢ ; 3 2 ∈ ℕ |
| 39 | 3nn | ⊢ 3 ∈ ℕ | |
| 40 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 41 | 36 40 | deccl | ⊢ ; 3 2 ∈ ℕ0 |
| 42 | 29 40 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
| 43 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 44 | 24 | sqvali | ⊢ ( 5 ↑ 2 ) = ( 5 · 5 ) |
| 45 | 5t5e25 | ⊢ ( 5 · 5 ) = ; 2 5 | |
| 46 | 44 45 | eqtri | ⊢ ( 5 ↑ 2 ) = ; 2 5 |
| 47 | 2cn | ⊢ 2 ∈ ℂ | |
| 48 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
| 49 | 24 47 48 | mulcomli | ⊢ ( 2 · 5 ) = ; 1 0 |
| 50 | 47 | addlidi | ⊢ ( 0 + 2 ) = 2 |
| 51 | 29 7 40 49 50 | decaddi | ⊢ ( ( 2 · 5 ) + 2 ) = ; 1 2 |
| 52 | 18 40 18 46 18 40 51 45 | decmul1c | ⊢ ( ( 5 ↑ 2 ) · 5 ) = ; ; 1 2 5 |
| 53 | 18 40 43 52 | numexpp1 | ⊢ ( 5 ↑ 3 ) = ; ; 1 2 5 |
| 54 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 55 | 29 54 | deccl | ⊢ ; 1 6 ∈ ℕ0 |
| 56 | eqid | ⊢ ; 1 2 = ; 1 2 | |
| 57 | eqid | ⊢ ; 1 6 = ; 1 6 | |
| 58 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 59 | 7cn | ⊢ 7 ∈ ℂ | |
| 60 | 7p1e8 | ⊢ ( 7 + 1 ) = 8 | |
| 61 | 59 12 60 | addcomli | ⊢ ( 1 + 7 ) = 8 |
| 62 | 61 19 | eqeltri | ⊢ ( 1 + 7 ) ∈ ℕ0 |
| 63 | eqid | ⊢ ; 3 2 = ; 3 2 | |
| 64 | 3t1e3 | ⊢ ( 3 · 1 ) = 3 | |
| 65 | 64 | oveq1i | ⊢ ( ( 3 · 1 ) + 1 ) = ( 3 + 1 ) |
| 66 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 67 | 65 66 | eqtri | ⊢ ( ( 3 · 1 ) + 1 ) = 4 |
| 68 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 69 | 68 61 | oveq12i | ⊢ ( ( 2 · 1 ) + ( 1 + 7 ) ) = ( 2 + 8 ) |
| 70 | 8cn | ⊢ 8 ∈ ℂ | |
| 71 | 8p2e10 | ⊢ ( 8 + 2 ) = ; 1 0 | |
| 72 | 70 47 71 | addcomli | ⊢ ( 2 + 8 ) = ; 1 0 |
| 73 | 69 72 | eqtri | ⊢ ( ( 2 · 1 ) + ( 1 + 7 ) ) = ; 1 0 |
| 74 | 36 40 62 63 29 7 29 67 73 | decrmac | ⊢ ( ( ; 3 2 · 1 ) + ( 1 + 7 ) ) = ; 4 0 |
| 75 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
| 76 | 75 | oveq1i | ⊢ ( ( 3 · 2 ) + 1 ) = ( 6 + 1 ) |
| 77 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
| 78 | 76 77 | eqtri | ⊢ ( ( 3 · 2 ) + 1 ) = 7 |
| 79 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 80 | 79 | oveq1i | ⊢ ( ( 2 · 2 ) + 6 ) = ( 4 + 6 ) |
| 81 | 6cn | ⊢ 6 ∈ ℂ | |
| 82 | 4cn | ⊢ 4 ∈ ℂ | |
| 83 | 6p4e10 | ⊢ ( 6 + 4 ) = ; 1 0 | |
| 84 | 81 82 83 | addcomli | ⊢ ( 4 + 6 ) = ; 1 0 |
| 85 | 80 84 | eqtri | ⊢ ( ( 2 · 2 ) + 6 ) = ; 1 0 |
| 86 | 36 40 54 63 40 7 29 78 85 | decrmac | ⊢ ( ( ; 3 2 · 2 ) + 6 ) = ; 7 0 |
| 87 | 29 40 29 54 56 57 41 7 58 74 86 | decma2c | ⊢ ( ( ; 3 2 · ; 1 2 ) + ; 1 6 ) = ; ; 4 0 0 |
| 88 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
| 89 | 3cn | ⊢ 3 ∈ ℂ | |
| 90 | 5t3e15 | ⊢ ( 5 · 3 ) = ; 1 5 | |
| 91 | 24 89 90 | mulcomli | ⊢ ( 3 · 5 ) = ; 1 5 |
| 92 | 29 18 88 91 | decsuc | ⊢ ( ( 3 · 5 ) + 1 ) = ; 1 6 |
| 93 | 18 36 40 63 7 29 92 49 | decmul1c | ⊢ ( ; 3 2 · 5 ) = ; ; 1 6 0 |
| 94 | 41 42 18 53 7 55 87 93 | decmul2c | ⊢ ( ; 3 2 · ( 5 ↑ 3 ) ) = ; ; ; 4 0 0 0 |
| 95 | 17 94 | eqtr4i | ⊢ ( 𝑁 − 1 ) = ( ; 3 2 · ( 5 ↑ 3 ) ) |
| 96 | 2lt10 | ⊢ 2 < ; 1 0 | |
| 97 | 1nn | ⊢ 1 ∈ ℕ | |
| 98 | 3lt10 | ⊢ 3 < ; 1 0 | |
| 99 | 97 40 36 98 | declti | ⊢ 3 < ; 1 2 |
| 100 | 36 42 40 18 96 99 | decltc | ⊢ ; 3 2 < ; ; 1 2 5 |
| 101 | 100 53 | breqtrri | ⊢ ; 3 2 < ( 5 ↑ 3 ) |
| 102 | 1 | 4001lem3 | ⊢ ( ( 2 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) |
| 103 | 1 | 4001lem4 | ⊢ ( ( ( 2 ↑ ; ; 8 0 0 ) − 1 ) gcd 𝑁 ) = 1 |
| 104 | 2 5 28 35 38 39 37 95 101 102 103 | pockthi | ⊢ 𝑁 ∈ ℙ |