Description: 4001 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 4001prm.1 | ⊢ 𝑁 = ; ; ; 4 0 0 1 | |
Assertion | 4001prm | ⊢ 𝑁 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4001prm.1 | ⊢ 𝑁 = ; ; ; 4 0 0 1 | |
2 | 5prm | ⊢ 5 ∈ ℙ | |
3 | 8nn | ⊢ 8 ∈ ℕ | |
4 | 3 | decnncl2 | ⊢ ; 8 0 ∈ ℕ |
5 | 4 | decnncl2 | ⊢ ; ; 8 0 0 ∈ ℕ |
6 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
7 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
8 | 6 7 | deccl | ⊢ ; 4 0 ∈ ℕ0 |
9 | 8 7 | deccl | ⊢ ; ; 4 0 0 ∈ ℕ0 |
10 | 9 7 | deccl | ⊢ ; ; ; 4 0 0 0 ∈ ℕ0 |
11 | 10 | nn0cni | ⊢ ; ; ; 4 0 0 0 ∈ ℂ |
12 | ax-1cn | ⊢ 1 ∈ ℂ | |
13 | 12 | addid2i | ⊢ ( 0 + 1 ) = 1 |
14 | eqid | ⊢ ; ; ; 4 0 0 0 = ; ; ; 4 0 0 0 | |
15 | 9 7 13 14 | decsuc | ⊢ ( ; ; ; 4 0 0 0 + 1 ) = ; ; ; 4 0 0 1 |
16 | 1 15 | eqtr4i | ⊢ 𝑁 = ( ; ; ; 4 0 0 0 + 1 ) |
17 | 11 12 16 | mvrraddi | ⊢ ( 𝑁 − 1 ) = ; ; ; 4 0 0 0 |
18 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
19 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
20 | 19 7 | deccl | ⊢ ; 8 0 ∈ ℕ0 |
21 | eqid | ⊢ ; ; 8 0 0 = ; ; 8 0 0 | |
22 | eqid | ⊢ ; 8 0 = ; 8 0 | |
23 | 8t5e40 | ⊢ ( 8 · 5 ) = ; 4 0 | |
24 | 5cn | ⊢ 5 ∈ ℂ | |
25 | 24 | mul02i | ⊢ ( 0 · 5 ) = 0 |
26 | 18 19 7 22 23 25 | decmul1 | ⊢ ( ; 8 0 · 5 ) = ; ; 4 0 0 |
27 | 18 20 7 21 26 25 | decmul1 | ⊢ ( ; ; 8 0 0 · 5 ) = ; ; ; 4 0 0 0 |
28 | 17 27 | eqtr4i | ⊢ ( 𝑁 − 1 ) = ( ; ; 8 0 0 · 5 ) |
29 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
30 | 9 29 | deccl | ⊢ ; ; ; 4 0 0 1 ∈ ℕ0 |
31 | 1 30 | eqeltri | ⊢ 𝑁 ∈ ℕ0 |
32 | 31 | nn0cni | ⊢ 𝑁 ∈ ℂ |
33 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
34 | 32 12 33 | mp2an | ⊢ ( ( 𝑁 − 1 ) + 1 ) = 𝑁 |
35 | 34 | eqcomi | ⊢ 𝑁 = ( ( 𝑁 − 1 ) + 1 ) |
36 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
37 | 2nn | ⊢ 2 ∈ ℕ | |
38 | 36 37 | decnncl | ⊢ ; 3 2 ∈ ℕ |
39 | 3nn | ⊢ 3 ∈ ℕ | |
40 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
41 | 36 40 | deccl | ⊢ ; 3 2 ∈ ℕ0 |
42 | 29 40 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
43 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
44 | 24 | sqvali | ⊢ ( 5 ↑ 2 ) = ( 5 · 5 ) |
45 | 5t5e25 | ⊢ ( 5 · 5 ) = ; 2 5 | |
46 | 44 45 | eqtri | ⊢ ( 5 ↑ 2 ) = ; 2 5 |
47 | 2cn | ⊢ 2 ∈ ℂ | |
48 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
49 | 24 47 48 | mulcomli | ⊢ ( 2 · 5 ) = ; 1 0 |
50 | 47 | addid2i | ⊢ ( 0 + 2 ) = 2 |
51 | 29 7 40 49 50 | decaddi | ⊢ ( ( 2 · 5 ) + 2 ) = ; 1 2 |
52 | 18 40 18 46 18 40 51 45 | decmul1c | ⊢ ( ( 5 ↑ 2 ) · 5 ) = ; ; 1 2 5 |
53 | 18 40 43 52 | numexpp1 | ⊢ ( 5 ↑ 3 ) = ; ; 1 2 5 |
54 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
55 | 29 54 | deccl | ⊢ ; 1 6 ∈ ℕ0 |
56 | eqid | ⊢ ; 1 2 = ; 1 2 | |
57 | eqid | ⊢ ; 1 6 = ; 1 6 | |
58 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
59 | 7cn | ⊢ 7 ∈ ℂ | |
60 | 7p1e8 | ⊢ ( 7 + 1 ) = 8 | |
61 | 59 12 60 | addcomli | ⊢ ( 1 + 7 ) = 8 |
62 | 61 19 | eqeltri | ⊢ ( 1 + 7 ) ∈ ℕ0 |
63 | eqid | ⊢ ; 3 2 = ; 3 2 | |
64 | 3t1e3 | ⊢ ( 3 · 1 ) = 3 | |
65 | 64 | oveq1i | ⊢ ( ( 3 · 1 ) + 1 ) = ( 3 + 1 ) |
66 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
67 | 65 66 | eqtri | ⊢ ( ( 3 · 1 ) + 1 ) = 4 |
68 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
69 | 68 61 | oveq12i | ⊢ ( ( 2 · 1 ) + ( 1 + 7 ) ) = ( 2 + 8 ) |
70 | 8cn | ⊢ 8 ∈ ℂ | |
71 | 8p2e10 | ⊢ ( 8 + 2 ) = ; 1 0 | |
72 | 70 47 71 | addcomli | ⊢ ( 2 + 8 ) = ; 1 0 |
73 | 69 72 | eqtri | ⊢ ( ( 2 · 1 ) + ( 1 + 7 ) ) = ; 1 0 |
74 | 36 40 62 63 29 7 29 67 73 | decrmac | ⊢ ( ( ; 3 2 · 1 ) + ( 1 + 7 ) ) = ; 4 0 |
75 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
76 | 75 | oveq1i | ⊢ ( ( 3 · 2 ) + 1 ) = ( 6 + 1 ) |
77 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
78 | 76 77 | eqtri | ⊢ ( ( 3 · 2 ) + 1 ) = 7 |
79 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
80 | 79 | oveq1i | ⊢ ( ( 2 · 2 ) + 6 ) = ( 4 + 6 ) |
81 | 6cn | ⊢ 6 ∈ ℂ | |
82 | 4cn | ⊢ 4 ∈ ℂ | |
83 | 6p4e10 | ⊢ ( 6 + 4 ) = ; 1 0 | |
84 | 81 82 83 | addcomli | ⊢ ( 4 + 6 ) = ; 1 0 |
85 | 80 84 | eqtri | ⊢ ( ( 2 · 2 ) + 6 ) = ; 1 0 |
86 | 36 40 54 63 40 7 29 78 85 | decrmac | ⊢ ( ( ; 3 2 · 2 ) + 6 ) = ; 7 0 |
87 | 29 40 29 54 56 57 41 7 58 74 86 | decma2c | ⊢ ( ( ; 3 2 · ; 1 2 ) + ; 1 6 ) = ; ; 4 0 0 |
88 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
89 | 3cn | ⊢ 3 ∈ ℂ | |
90 | 5t3e15 | ⊢ ( 5 · 3 ) = ; 1 5 | |
91 | 24 89 90 | mulcomli | ⊢ ( 3 · 5 ) = ; 1 5 |
92 | 29 18 88 91 | decsuc | ⊢ ( ( 3 · 5 ) + 1 ) = ; 1 6 |
93 | 18 36 40 63 7 29 92 49 | decmul1c | ⊢ ( ; 3 2 · 5 ) = ; ; 1 6 0 |
94 | 41 42 18 53 7 55 87 93 | decmul2c | ⊢ ( ; 3 2 · ( 5 ↑ 3 ) ) = ; ; ; 4 0 0 0 |
95 | 17 94 | eqtr4i | ⊢ ( 𝑁 − 1 ) = ( ; 3 2 · ( 5 ↑ 3 ) ) |
96 | 2lt10 | ⊢ 2 < ; 1 0 | |
97 | 1nn | ⊢ 1 ∈ ℕ | |
98 | 3lt10 | ⊢ 3 < ; 1 0 | |
99 | 97 40 36 98 | declti | ⊢ 3 < ; 1 2 |
100 | 36 42 40 18 96 99 | decltc | ⊢ ; 3 2 < ; ; 1 2 5 |
101 | 100 53 | breqtrri | ⊢ ; 3 2 < ( 5 ↑ 3 ) |
102 | 1 | 4001lem3 | ⊢ ( ( 2 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) |
103 | 1 | 4001lem4 | ⊢ ( ( ( 2 ↑ ; ; 8 0 0 ) − 1 ) gcd 𝑁 ) = 1 |
104 | 2 5 28 35 38 39 37 95 101 102 103 | pockthi | ⊢ 𝑁 ∈ ℙ |