| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							4that.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							4that.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							4that.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							4that.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							simp21l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 6 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  =  𝑃 )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							simp21r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ¬  𝑃  ≤  𝑊 )  | 
						
						
							| 8 | 
							
								7
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  =  𝑃 )  →  ¬  𝑃  ≤  𝑊 )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑃  =  𝑆  →  ( 𝑃  ∨  𝑃 )  =  ( 𝑆  ∨  𝑃 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqcoms | 
							⊢ ( 𝑆  =  𝑃  →  ( 𝑃  ∨  𝑃 )  =  ( 𝑆  ∨  𝑃 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  =  𝑃 )  →  ( 𝑃  ∨  𝑃 )  =  ( 𝑆  ∨  𝑃 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑧  =  𝑃  →  ( 𝑧  ≤  𝑊  ↔  𝑃  ≤  𝑊 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							notbid | 
							⊢ ( 𝑧  =  𝑃  →  ( ¬  𝑧  ≤  𝑊  ↔  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑧  =  𝑃  →  ( 𝑃  ∨  𝑧 )  =  ( 𝑃  ∨  𝑃 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑧  =  𝑃  →  ( 𝑆  ∨  𝑧 )  =  ( 𝑆  ∨  𝑃 ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqeq12d | 
							⊢ ( 𝑧  =  𝑃  →  ( ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 )  ↔  ( 𝑃  ∨  𝑃 )  =  ( 𝑆  ∨  𝑃 ) ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							anbi12d | 
							⊢ ( 𝑧  =  𝑃  →  ( ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) )  ↔  ( ¬  𝑃  ≤  𝑊  ∧  ( 𝑃  ∨  𝑃 )  =  ( 𝑆  ∨  𝑃 ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							rspcev | 
							⊢ ( ( 𝑃  ∈  𝐴  ∧  ( ¬  𝑃  ≤  𝑊  ∧  ( 𝑃  ∨  𝑃 )  =  ( 𝑆  ∨  𝑃 ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  | 
						
						
							| 19 | 
							
								6 8 11 18
							 | 
							syl12anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  =  𝑃 )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpl3r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  =  𝑄 )  →  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑟  =  𝑧  →  ( 𝑟  ≤  𝑊  ↔  𝑧  ≤  𝑊 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							notbid | 
							⊢ ( 𝑟  =  𝑧  →  ( ¬  𝑟  ≤  𝑊  ↔  ¬  𝑧  ≤  𝑊 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑟  =  𝑧  →  ( 𝑃  ∨  𝑟 )  =  ( 𝑃  ∨  𝑧 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑟  =  𝑧  →  ( 𝑄  ∨  𝑟 )  =  ( 𝑄  ∨  𝑧 ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							eqeq12d | 
							⊢ ( 𝑟  =  𝑧  →  ( ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 )  ↔  ( 𝑃  ∨  𝑧 )  =  ( 𝑄  ∨  𝑧 ) ) )  | 
						
						
							| 27 | 
							
								23 26
							 | 
							anbi12d | 
							⊢ ( 𝑟  =  𝑧  →  ( ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) )  ↔  ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑄  ∨  𝑧 ) ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) )  ↔  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑄  ∨  𝑧 ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑆  =  𝑄  →  ( 𝑆  ∨  𝑧 )  =  ( 𝑄  ∨  𝑧 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							eqeq2d | 
							⊢ ( 𝑆  =  𝑄  →  ( ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 )  ↔  ( 𝑃  ∨  𝑧 )  =  ( 𝑄  ∨  𝑧 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							anbi2d | 
							⊢ ( 𝑆  =  𝑄  →  ( ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) )  ↔  ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑄  ∨  𝑧 ) ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							rexbidv | 
							⊢ ( 𝑆  =  𝑄  →  ( ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) )  ↔  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑄  ∨  𝑧 ) ) ) )  | 
						
						
							| 33 | 
							
								28 32
							 | 
							bitr4id | 
							⊢ ( 𝑆  =  𝑄  →  ( ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) )  ↔  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantl | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  =  𝑄 )  →  ( ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) )  ↔  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) ) )  | 
						
						
							| 35 | 
							
								21 34
							 | 
							mpbid | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  =  𝑄 )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							simp22l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 37 | 
							
								36
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 38 | 
							
								
							 | 
							simp22r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ¬  𝑄  ≤  𝑊 )  | 
						
						
							| 39 | 
							
								38
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  ¬  𝑄  ≤  𝑊 )  | 
						
						
							| 40 | 
							
								
							 | 
							simp3l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 41 | 
							
								40
							 | 
							necomd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑄  ≠  𝑃 )  | 
						
						
							| 42 | 
							
								41
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  𝑄  ≠  𝑃 )  | 
						
						
							| 43 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  𝑆  ≠  𝑄 )  | 
						
						
							| 44 | 
							
								43
							 | 
							necomd | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  𝑄  ≠  𝑆 )  | 
						
						
							| 45 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 47 | 
							
								
							 | 
							hlcvl | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  CvLat )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝐾  ∈  CvLat )  | 
						
						
							| 49 | 
							
								48
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  𝐾  ∈  CvLat )  | 
						
						
							| 50 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 51 | 
							
								50
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 52 | 
							
								5
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 53 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  𝑆  ≠  𝑃 )  | 
						
						
							| 54 | 
							
								1 2 3
							 | 
							cvlatexch1 | 
							⊢ ( ( 𝐾  ∈  CvLat  ∧  ( 𝑆  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  ∧  𝑆  ≠  𝑃 )  →  ( 𝑆  ≤  ( 𝑃  ∨  𝑄 )  →  𝑄  ≤  ( 𝑃  ∨  𝑆 ) ) )  | 
						
						
							| 55 | 
							
								49 51 37 52 53 54
							 | 
							syl131anc | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  ( 𝑆  ≤  ( 𝑃  ∨  𝑄 )  →  𝑄  ≤  ( 𝑃  ∨  𝑆 ) ) )  | 
						
						
							| 56 | 
							
								45 55
							 | 
							mpd | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  𝑄  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 57 | 
							
								53
							 | 
							necomd | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  𝑃  ≠  𝑆 )  | 
						
						
							| 58 | 
							
								3 1 2
							 | 
							cvlsupr2 | 
							⊢ ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑆 )  →  ( ( 𝑃  ∨  𝑄 )  =  ( 𝑆  ∨  𝑄 )  ↔  ( 𝑄  ≠  𝑃  ∧  𝑄  ≠  𝑆  ∧  𝑄  ≤  ( 𝑃  ∨  𝑆 ) ) ) )  | 
						
						
							| 59 | 
							
								49 52 51 37 57 58
							 | 
							syl131anc | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  ( ( 𝑃  ∨  𝑄 )  =  ( 𝑆  ∨  𝑄 )  ↔  ( 𝑄  ≠  𝑃  ∧  𝑄  ≠  𝑆  ∧  𝑄  ≤  ( 𝑃  ∨  𝑆 ) ) ) )  | 
						
						
							| 60 | 
							
								42 44 56 59
							 | 
							mpbir3and | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑆  ∨  𝑄 ) )  | 
						
						
							| 61 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑧  =  𝑄  →  ( 𝑧  ≤  𝑊  ↔  𝑄  ≤  𝑊 ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							notbid | 
							⊢ ( 𝑧  =  𝑄  →  ( ¬  𝑧  ≤  𝑊  ↔  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 63 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑧  =  𝑄  →  ( 𝑃  ∨  𝑧 )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 64 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑧  =  𝑄  →  ( 𝑆  ∨  𝑧 )  =  ( 𝑆  ∨  𝑄 ) )  | 
						
						
							| 65 | 
							
								63 64
							 | 
							eqeq12d | 
							⊢ ( 𝑧  =  𝑄  →  ( ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 )  ↔  ( 𝑃  ∨  𝑄 )  =  ( 𝑆  ∨  𝑄 ) ) )  | 
						
						
							| 66 | 
							
								62 65
							 | 
							anbi12d | 
							⊢ ( 𝑧  =  𝑄  →  ( ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) )  ↔  ( ¬  𝑄  ≤  𝑊  ∧  ( 𝑃  ∨  𝑄 )  =  ( 𝑆  ∨  𝑄 ) ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							rspcev | 
							⊢ ( ( 𝑄  ∈  𝐴  ∧  ( ¬  𝑄  ≤  𝑊  ∧  ( 𝑃  ∨  𝑄 )  =  ( 𝑆  ∨  𝑄 ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  | 
						
						
							| 68 | 
							
								37 39 60 67
							 | 
							syl12anc | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  ∧  𝑆  ≠  𝑄 )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  | 
						
						
							| 69 | 
							
								35 68
							 | 
							pm2.61dane | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑆  ≠  𝑃 )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  | 
						
						
							| 70 | 
							
								19 69
							 | 
							pm2.61dane | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  | 
						
						
							| 71 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 72 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 ) )  | 
						
						
							| 73 | 
							
								
							 | 
							simpl3l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 74 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 75 | 
							
								
							 | 
							simpl3r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  | 
						
						
							| 76 | 
							
								1 2 3 4
							 | 
							4atexlem7 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  | 
						
						
							| 77 | 
							
								71 72 73 74 75 76
							 | 
							syl113anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  | 
						
						
							| 78 | 
							
								70 77
							 | 
							pm2.61dan | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  |