| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							4that.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							4that.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							4that.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							4that.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑆  =  𝑃  →  ( 𝑆  ∨  𝑧 )  =  ( 𝑃  ∨  𝑧 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqeq1d | 
							⊢ ( 𝑆  =  𝑃  →  ( ( 𝑆  ∨  𝑧 )  =  ( 𝑇  ∨  𝑧 )  ↔  ( 𝑃  ∨  𝑧 )  =  ( 𝑇  ∨  𝑧 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							anbi2d | 
							⊢ ( 𝑆  =  𝑃  →  ( ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑆  ∨  𝑧 )  =  ( 𝑇  ∨  𝑧 ) )  ↔  ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑇  ∨  𝑧 ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							rexbidv | 
							⊢ ( 𝑆  =  𝑃  →  ( ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑆  ∨  𝑧 )  =  ( 𝑇  ∨  𝑧 ) )  ↔  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑇  ∨  𝑧 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≠  𝑃 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simpl23 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≠  𝑃 )  →  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simpl21 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≠  𝑃 )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simpl32 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≠  𝑃 )  →  𝑇  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≠  𝑃 )  →  𝑆  ≠  𝑃 )  | 
						
						
							| 14 | 
							
								
							 | 
							simpl22 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≠  𝑃 )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simp23l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≠  𝑃 )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 17 | 
							
								
							 | 
							simpl31 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≠  𝑃 )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 18 | 
							
								
							 | 
							simpl33 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≠  𝑃 )  →  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  | 
						
						
							| 19 | 
							
								1 2 3 4
							 | 
							4atex | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑦  ∈  𝐴 ( ¬  𝑦  ≤  𝑊  ∧  ( 𝑃  ∨  𝑦 )  =  ( 𝑆  ∨  𝑦 ) ) )  | 
						
						
							| 20 | 
							
								9 11 14 16 17 18 19
							 | 
							syl132anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≠  𝑃 )  →  ∃ 𝑦  ∈  𝐴 ( ¬  𝑦  ≤  𝑊  ∧  ( 𝑃  ∨  𝑦 )  =  ( 𝑆  ∨  𝑦 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝑃  ∨  𝑦 )  =  ( 𝑆  ∨  𝑦 )  ↔  ( 𝑆  ∨  𝑦 )  =  ( 𝑃  ∨  𝑦 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							anbi2i | 
							⊢ ( ( ¬  𝑦  ≤  𝑊  ∧  ( 𝑃  ∨  𝑦 )  =  ( 𝑆  ∨  𝑦 ) )  ↔  ( ¬  𝑦  ≤  𝑊  ∧  ( 𝑆  ∨  𝑦 )  =  ( 𝑃  ∨  𝑦 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							rexbii | 
							⊢ ( ∃ 𝑦  ∈  𝐴 ( ¬  𝑦  ≤  𝑊  ∧  ( 𝑃  ∨  𝑦 )  =  ( 𝑆  ∨  𝑦 ) )  ↔  ∃ 𝑦  ∈  𝐴 ( ¬  𝑦  ≤  𝑊  ∧  ( 𝑆  ∨  𝑦 )  =  ( 𝑃  ∨  𝑦 ) ) )  | 
						
						
							| 24 | 
							
								20 23
							 | 
							sylib | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≠  𝑃 )  →  ∃ 𝑦  ∈  𝐴 ( ¬  𝑦  ≤  𝑊  ∧  ( 𝑆  ∨  𝑦 )  =  ( 𝑃  ∨  𝑦 ) ) )  | 
						
						
							| 25 | 
							
								1 2 3 4
							 | 
							4atex | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑇  ∈  𝐴 )  ∧  ( 𝑆  ≠  𝑃  ∧  ∃ 𝑦  ∈  𝐴 ( ¬  𝑦  ≤  𝑊  ∧  ( 𝑆  ∨  𝑦 )  =  ( 𝑃  ∨  𝑦 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑆  ∨  𝑧 )  =  ( 𝑇  ∨  𝑧 ) ) )  | 
						
						
							| 26 | 
							
								9 10 11 12 13 24 25
							 | 
							syl132anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  ∧  𝑆  ≠  𝑃 )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑆  ∨  𝑧 )  =  ( 𝑇  ∨  𝑧 ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simp32 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑇  ∈  𝐴 )  | 
						
						
							| 31 | 
							
								
							 | 
							simp31 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 32 | 
							
								
							 | 
							simp33 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  | 
						
						
							| 33 | 
							
								1 2 3 4
							 | 
							4atex | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑇  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑇  ∨  𝑧 ) ) )  | 
						
						
							| 34 | 
							
								27 28 29 30 31 32 33
							 | 
							syl132anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑇  ∨  𝑧 ) ) )  | 
						
						
							| 35 | 
							
								8 26 34
							 | 
							pm2.61ne | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ∈  𝐴  ∧  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑆  ∨  𝑧 )  =  ( 𝑇  ∨  𝑧 ) ) )  |