Metamath Proof Explorer


Theorem 4atex2-0aOLDN

Description: Same as 4atex2 except that S is zero. (Contributed by NM, 27-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses 4that.l = ( le ‘ 𝐾 )
4that.j = ( join ‘ 𝐾 )
4that.a 𝐴 = ( Atoms ‘ 𝐾 )
4that.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion 4atex2-0aOLDN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑆 𝑧 ) = ( 𝑇 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 4that.l = ( le ‘ 𝐾 )
2 4that.j = ( join ‘ 𝐾 )
3 4that.a 𝐴 = ( Atoms ‘ 𝐾 )
4 4that.h 𝐻 = ( LHyp ‘ 𝐾 )
5 simp32l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑇𝐴 )
6 simp32r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ¬ 𝑇 𝑊 )
7 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐾 ∈ HL )
8 hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )
9 7 8 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐾 ∈ OL )
10 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
11 10 3 atbase ( 𝑇𝐴𝑇 ∈ ( Base ‘ 𝐾 ) )
12 5 11 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑇 ∈ ( Base ‘ 𝐾 ) )
13 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
14 10 2 13 olj02 ( ( 𝐾 ∈ OL ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ) → ( ( 0. ‘ 𝐾 ) 𝑇 ) = 𝑇 )
15 9 12 14 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 0. ‘ 𝐾 ) 𝑇 ) = 𝑇 )
16 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑆 = ( 0. ‘ 𝐾 ) )
17 16 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑆 𝑇 ) = ( ( 0. ‘ 𝐾 ) 𝑇 ) )
18 2 3 hlatjidm ( ( 𝐾 ∈ HL ∧ 𝑇𝐴 ) → ( 𝑇 𝑇 ) = 𝑇 )
19 7 5 18 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑇 𝑇 ) = 𝑇 )
20 15 17 19 3eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑆 𝑇 ) = ( 𝑇 𝑇 ) )
21 breq1 ( 𝑧 = 𝑇 → ( 𝑧 𝑊𝑇 𝑊 ) )
22 21 notbid ( 𝑧 = 𝑇 → ( ¬ 𝑧 𝑊 ↔ ¬ 𝑇 𝑊 ) )
23 oveq2 ( 𝑧 = 𝑇 → ( 𝑆 𝑧 ) = ( 𝑆 𝑇 ) )
24 oveq2 ( 𝑧 = 𝑇 → ( 𝑇 𝑧 ) = ( 𝑇 𝑇 ) )
25 23 24 eqeq12d ( 𝑧 = 𝑇 → ( ( 𝑆 𝑧 ) = ( 𝑇 𝑧 ) ↔ ( 𝑆 𝑇 ) = ( 𝑇 𝑇 ) ) )
26 22 25 anbi12d ( 𝑧 = 𝑇 → ( ( ¬ 𝑧 𝑊 ∧ ( 𝑆 𝑧 ) = ( 𝑇 𝑧 ) ) ↔ ( ¬ 𝑇 𝑊 ∧ ( 𝑆 𝑇 ) = ( 𝑇 𝑇 ) ) ) )
27 26 rspcev ( ( 𝑇𝐴 ∧ ( ¬ 𝑇 𝑊 ∧ ( 𝑆 𝑇 ) = ( 𝑇 𝑇 ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑆 𝑧 ) = ( 𝑇 𝑧 ) ) )
28 5 6 20 27 syl12anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑆 𝑧 ) = ( 𝑇 𝑧 ) ) )