Step |
Hyp |
Ref |
Expression |
1 |
|
4that.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
4that.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
4that.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
4that.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
simp32l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑇 ∈ 𝐴 ) |
6 |
|
simp32r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ¬ 𝑇 ≤ 𝑊 ) |
7 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝐾 ∈ HL ) |
8 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝐾 ∈ OL ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
11 |
10 3
|
atbase |
⊢ ( 𝑇 ∈ 𝐴 → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
12 |
5 11
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
13 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
14 |
10 2 13
|
olj02 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ) → ( ( 0. ‘ 𝐾 ) ∨ 𝑇 ) = 𝑇 ) |
15 |
9 12 14
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 0. ‘ 𝐾 ) ∨ 𝑇 ) = 𝑇 ) |
16 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑆 = ( 0. ‘ 𝐾 ) ) |
17 |
16
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑆 ∨ 𝑇 ) = ( ( 0. ‘ 𝐾 ) ∨ 𝑇 ) ) |
18 |
2 3
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ) → ( 𝑇 ∨ 𝑇 ) = 𝑇 ) |
19 |
7 5 18
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑇 ∨ 𝑇 ) = 𝑇 ) |
20 |
15 17 19
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑆 ∨ 𝑇 ) = ( 𝑇 ∨ 𝑇 ) ) |
21 |
|
breq1 |
⊢ ( 𝑧 = 𝑇 → ( 𝑧 ≤ 𝑊 ↔ 𝑇 ≤ 𝑊 ) ) |
22 |
21
|
notbid |
⊢ ( 𝑧 = 𝑇 → ( ¬ 𝑧 ≤ 𝑊 ↔ ¬ 𝑇 ≤ 𝑊 ) ) |
23 |
|
oveq2 |
⊢ ( 𝑧 = 𝑇 → ( 𝑆 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑇 ) ) |
24 |
|
oveq2 |
⊢ ( 𝑧 = 𝑇 → ( 𝑇 ∨ 𝑧 ) = ( 𝑇 ∨ 𝑇 ) ) |
25 |
23 24
|
eqeq12d |
⊢ ( 𝑧 = 𝑇 → ( ( 𝑆 ∨ 𝑧 ) = ( 𝑇 ∨ 𝑧 ) ↔ ( 𝑆 ∨ 𝑇 ) = ( 𝑇 ∨ 𝑇 ) ) ) |
26 |
22 25
|
anbi12d |
⊢ ( 𝑧 = 𝑇 → ( ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑆 ∨ 𝑧 ) = ( 𝑇 ∨ 𝑧 ) ) ↔ ( ¬ 𝑇 ≤ 𝑊 ∧ ( 𝑆 ∨ 𝑇 ) = ( 𝑇 ∨ 𝑇 ) ) ) ) |
27 |
26
|
rspcev |
⊢ ( ( 𝑇 ∈ 𝐴 ∧ ( ¬ 𝑇 ≤ 𝑊 ∧ ( 𝑆 ∨ 𝑇 ) = ( 𝑇 ∨ 𝑇 ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑆 ∨ 𝑧 ) = ( 𝑇 ∨ 𝑧 ) ) ) |
28 |
5 6 20 27
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑆 = ( 0. ‘ 𝐾 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑆 ∨ 𝑧 ) = ( 𝑇 ∨ 𝑧 ) ) ) |