Step |
Hyp |
Ref |
Expression |
1 |
|
4thatlem.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
2 |
|
4thatlem0.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
4thatlem0.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
4thatlem0.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
4thatlem0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
4thatlem0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
4thatlem0.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
4thatlem0.v |
⊢ 𝑉 = ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) |
9 |
|
4thatlem0.c |
⊢ 𝐶 = ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) |
10 |
1 2 3 4 5 6 7 8 9
|
4atexlemc |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝑆 ) → 𝐶 ∈ 𝐴 ) |
12 |
1 2 3 4 5 6 7 8 9
|
4atexlemnclw |
⊢ ( 𝜑 → ¬ 𝐶 ≤ 𝑊 ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝑆 ) → ¬ 𝐶 ≤ 𝑊 ) |
14 |
1 2 3 4 5 6 7 8
|
4atexlemntlpq |
⊢ ( 𝜑 → ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) |
15 |
|
id |
⊢ ( 𝐶 = 𝑃 → 𝐶 = 𝑃 ) |
16 |
9 15
|
eqtr3id |
⊢ ( 𝐶 = 𝑃 → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) = 𝑃 ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝑃 ) → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) = 𝑃 ) |
18 |
1
|
4atexlemkl |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
19 |
1 3 5
|
4atexlemqtb |
⊢ ( 𝜑 → ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
20 |
1 3 5
|
4atexlempsb |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
22 |
21 2 4
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑄 ∨ 𝑇 ) ) |
23 |
18 19 20 22
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑄 ∨ 𝑇 ) ) |
24 |
1
|
4atexlemk |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
25 |
1
|
4atexlemq |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
26 |
1
|
4atexlemt |
⊢ ( 𝜑 → 𝑇 ∈ 𝐴 ) |
27 |
3 5
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑇 ) = ( 𝑇 ∨ 𝑄 ) ) |
28 |
24 25 26 27
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ∨ 𝑇 ) = ( 𝑇 ∨ 𝑄 ) ) |
29 |
23 28
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑇 ∨ 𝑄 ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝑃 ) → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑇 ∨ 𝑄 ) ) |
31 |
17 30
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝑃 ) → 𝑃 ≤ ( 𝑇 ∨ 𝑄 ) ) |
32 |
1
|
4atexlemkc |
⊢ ( 𝜑 → 𝐾 ∈ CvLat ) |
33 |
1
|
4atexlemp |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
34 |
1
|
4atexlempnq |
⊢ ( 𝜑 → 𝑃 ≠ 𝑄 ) |
35 |
2 3 5
|
cvlatexch2 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ≤ ( 𝑇 ∨ 𝑄 ) → 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
36 |
32 33 26 25 34 35
|
syl131anc |
⊢ ( 𝜑 → ( 𝑃 ≤ ( 𝑇 ∨ 𝑄 ) → 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝑃 ) → ( 𝑃 ≤ ( 𝑇 ∨ 𝑄 ) → 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
38 |
31 37
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝑃 ) → 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) |
39 |
38
|
ex |
⊢ ( 𝜑 → ( 𝐶 = 𝑃 → 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
40 |
39
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) → 𝐶 ≠ 𝑃 ) ) |
41 |
14 40
|
mpd |
⊢ ( 𝜑 → 𝐶 ≠ 𝑃 ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝑆 ) → 𝐶 ≠ 𝑃 ) |
43 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝑆 ) → 𝐶 ≠ 𝑆 ) |
44 |
21 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑃 ∨ 𝑆 ) ) |
45 |
18 19 20 44
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑃 ∨ 𝑆 ) ) |
46 |
9 45
|
eqbrtrid |
⊢ ( 𝜑 → 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝑆 ) → 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) |
48 |
1
|
4atexlems |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
49 |
1 2 3 5
|
4atexlempns |
⊢ ( 𝜑 → 𝑃 ≠ 𝑆 ) |
50 |
5 2 3
|
cvlsupr2 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑆 ) → ( ( 𝑃 ∨ 𝐶 ) = ( 𝑆 ∨ 𝐶 ) ↔ ( 𝐶 ≠ 𝑃 ∧ 𝐶 ≠ 𝑆 ∧ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ) ) |
51 |
32 33 48 10 49 50
|
syl131anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝐶 ) = ( 𝑆 ∨ 𝐶 ) ↔ ( 𝐶 ≠ 𝑃 ∧ 𝐶 ≠ 𝑆 ∧ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝑆 ) → ( ( 𝑃 ∨ 𝐶 ) = ( 𝑆 ∨ 𝐶 ) ↔ ( 𝐶 ≠ 𝑃 ∧ 𝐶 ≠ 𝑆 ∧ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ) ) |
53 |
42 43 47 52
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝑆 ) → ( 𝑃 ∨ 𝐶 ) = ( 𝑆 ∨ 𝐶 ) ) |
54 |
|
breq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 ≤ 𝑊 ↔ 𝐶 ≤ 𝑊 ) ) |
55 |
54
|
notbid |
⊢ ( 𝑧 = 𝐶 → ( ¬ 𝑧 ≤ 𝑊 ↔ ¬ 𝐶 ≤ 𝑊 ) ) |
56 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝑃 ∨ 𝑧 ) = ( 𝑃 ∨ 𝐶 ) ) |
57 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝑆 ∨ 𝑧 ) = ( 𝑆 ∨ 𝐶 ) ) |
58 |
56 57
|
eqeq12d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ↔ ( 𝑃 ∨ 𝐶 ) = ( 𝑆 ∨ 𝐶 ) ) ) |
59 |
55 58
|
anbi12d |
⊢ ( 𝑧 = 𝐶 → ( ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ↔ ( ¬ 𝐶 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝐶 ) = ( 𝑆 ∨ 𝐶 ) ) ) ) |
60 |
59
|
rspcev |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ¬ 𝐶 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝐶 ) = ( 𝑆 ∨ 𝐶 ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) |
61 |
11 13 53 60
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝑆 ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) |