Metamath Proof Explorer


Theorem 4atexlemex6

Description: Lemma for 4atexlem7 . (Contributed by NM, 25-Nov-2012)

Ref Expression
Hypotheses 4thatleme.l = ( le ‘ 𝐾 )
4thatleme.j = ( join ‘ 𝐾 )
4thatleme.m = ( meet ‘ 𝐾 )
4thatleme.a 𝐴 = ( Atoms ‘ 𝐾 )
4thatleme.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion 4atexlemex6 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 4thatleme.l = ( le ‘ 𝐾 )
2 4thatleme.j = ( join ‘ 𝐾 )
3 4thatleme.m = ( meet ‘ 𝐾 )
4 4thatleme.a 𝐴 = ( Atoms ‘ 𝐾 )
5 4thatleme.h 𝐻 = ( LHyp ‘ 𝐾 )
6 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
7 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
9 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑄𝐴 )
10 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑃𝑄 )
11 1 2 3 4 5 lhpat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑃𝑄 ) ) → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ 𝐴 )
12 7 8 9 10 11 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ 𝐴 )
13 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑆𝐴 )
14 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑃𝐴 )
15 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ¬ 𝑆 ( 𝑃 𝑄 ) )
16 1 2 4 atnlej1 ( ( 𝐾 ∈ HL ∧ ( 𝑆𝐴𝑃𝐴𝑄𝐴 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) → 𝑆𝑃 )
17 6 13 14 9 15 16 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑆𝑃 )
18 17 necomd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑃𝑆 )
19 1 2 3 4 5 lhpat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑆𝐴𝑃𝑆 ) ) → ( ( 𝑃 𝑆 ) 𝑊 ) ∈ 𝐴 )
20 7 8 13 18 19 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 𝑆 ) 𝑊 ) ∈ 𝐴 )
21 2 4 hlsupr2 ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑄 ) 𝑊 ) ∈ 𝐴 ∧ ( ( 𝑃 𝑆 ) 𝑊 ) ∈ 𝐴 ) → ∃ 𝑡𝐴 ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) )
22 6 12 20 21 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ∃ 𝑡𝐴 ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) )
23 simp111 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ∧ 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
24 simp112 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ∧ 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
25 simp113 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ∧ 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
26 simp12r ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ∧ 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) → 𝑆𝐴 )
27 simp2ll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑅𝐴 )
28 27 3ad2ant1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ∧ 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) → 𝑅𝐴 )
29 simp2lr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ¬ 𝑅 𝑊 )
30 29 3ad2ant1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ∧ 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) → ¬ 𝑅 𝑊 )
31 simp131 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ∧ 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) → ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) )
32 28 30 31 3jca ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ∧ 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) )
33 3simpc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ∧ 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) → ( 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) )
34 simp132 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ∧ 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) → 𝑃𝑄 )
35 simp133 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ∧ 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) → ¬ 𝑆 ( 𝑃 𝑄 ) )
36 biid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) )
37 eqid ( ( 𝑃 𝑄 ) 𝑊 ) = ( ( 𝑃 𝑄 ) 𝑊 )
38 eqid ( ( 𝑃 𝑆 ) 𝑊 ) = ( ( 𝑃 𝑆 ) 𝑊 )
39 eqid ( ( 𝑄 𝑡 ) ( 𝑃 𝑆 ) ) = ( ( 𝑄 𝑡 ) ( 𝑃 𝑆 ) )
40 eqid ( ( 𝑅 𝑡 ) ( 𝑃 𝑆 ) ) = ( ( 𝑅 𝑡 ) ( 𝑃 𝑆 ) )
41 36 1 2 3 4 5 37 38 39 40 4atexlemex4 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑄 𝑡 ) ( 𝑃 𝑆 ) ) = 𝑆 ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) )
42 36 1 2 3 4 5 37 38 39 4atexlemex2 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑄 𝑡 ) ( 𝑃 𝑆 ) ) ≠ 𝑆 ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) )
43 41 42 pm2.61dane ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) )
44 23 24 25 26 32 33 34 35 43 syl332anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) ∧ 𝑡𝐴 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) )
45 44 rexlimdv3a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( ∃ 𝑡𝐴 ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑡 ) = ( ( ( 𝑃 𝑆 ) 𝑊 ) 𝑡 ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) )
46 22 45 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ∧ 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) )