| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							4thatleme.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							4thatleme.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							4thatleme.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							4thatleme.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							4thatleme.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							simp11l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 7 | 
							
								
							 | 
							simp11 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simp12 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp13l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							simp32 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 11 | 
							
								1 2 3 4 5
							 | 
							lhpat | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  𝐴 )  | 
						
						
							| 12 | 
							
								7 8 9 10 11
							 | 
							syl112anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								
							 | 
							simp2r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 14 | 
							
								
							 | 
							simp12l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 15 | 
							
								
							 | 
							simp33 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 16 | 
							
								1 2 4
							 | 
							atnlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑆  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑆  ≠  𝑃 )  | 
						
						
							| 17 | 
							
								6 13 14 9 15 16
							 | 
							syl131anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑆  ≠  𝑃 )  | 
						
						
							| 18 | 
							
								17
							 | 
							necomd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≠  𝑆 )  | 
						
						
							| 19 | 
							
								1 2 3 4 5
							 | 
							lhpat | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑃  ≠  𝑆 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∈  𝐴 )  | 
						
						
							| 20 | 
							
								7 8 13 18 19
							 | 
							syl112anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∈  𝐴 )  | 
						
						
							| 21 | 
							
								2 4
							 | 
							hlsupr2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  𝐴  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∈  𝐴 )  →  ∃ 𝑡  ∈  𝐴 ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) )  | 
						
						
							| 22 | 
							
								6 12 20 21
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ∃ 𝑡  ∈  𝐴 ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simp111 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simp112 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simp113 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simp12r | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 27 | 
							
								
							 | 
							simp2ll | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 28 | 
							
								27
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 29 | 
							
								
							 | 
							simp2lr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑅  ≤  𝑊 )  | 
						
						
							| 30 | 
							
								29
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) )  →  ¬  𝑅  ≤  𝑊 )  | 
						
						
							| 31 | 
							
								
							 | 
							simp131 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) )  →  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 32 | 
							
								28 30 31
							 | 
							3jca | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) )  →  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							3simpc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) )  →  ( 𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							simp132 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 35 | 
							
								
							 | 
							simp133 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) )  →  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							biid | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑆  ∈  𝐴  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ↔  ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑆  ∈  𝐴  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							eqid | 
							⊢ ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 38 | 
							
								
							 | 
							eqid | 
							⊢ ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  =  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  | 
						
						
							| 39 | 
							
								
							 | 
							eqid | 
							⊢ ( ( 𝑄  ∨  𝑡 )  ∧  ( 𝑃  ∨  𝑆 ) )  =  ( ( 𝑄  ∨  𝑡 )  ∧  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 40 | 
							
								
							 | 
							eqid | 
							⊢ ( ( 𝑅  ∨  𝑡 )  ∧  ( 𝑃  ∨  𝑆 ) )  =  ( ( 𝑅  ∨  𝑡 )  ∧  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 41 | 
							
								36 1 2 3 4 5 37 38 39 40
							 | 
							4atexlemex4 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑆  ∈  𝐴  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( ( 𝑄  ∨  𝑡 )  ∧  ( 𝑃  ∨  𝑆 ) )  =  𝑆 )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  | 
						
						
							| 42 | 
							
								36 1 2 3 4 5 37 38 39
							 | 
							4atexlemex2 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑆  ∈  𝐴  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( ( 𝑄  ∨  𝑡 )  ∧  ( 𝑃  ∨  𝑆 ) )  ≠  𝑆 )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							pm2.61dane | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑆  ∈  𝐴  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  | 
						
						
							| 44 | 
							
								23 24 25 26 32 33 34 35 43
							 | 
							syl332anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑡  ∈  𝐴  ∧  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							rexlimdv3a | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ∃ 𝑡  ∈  𝐴 ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑡 )  =  ( ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ∨  𝑡 )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) ) )  | 
						
						
							| 46 | 
							
								22 45
							 | 
							mpd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  ∧  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ( 𝑃  ∨  𝑧 )  =  ( 𝑆  ∨  𝑧 ) ) )  |