Metamath Proof Explorer


Theorem 4atexlemnclw

Description: Lemma for 4atexlem7 . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) )
4thatlem0.l = ( le ‘ 𝐾 )
4thatlem0.j = ( join ‘ 𝐾 )
4thatlem0.m = ( meet ‘ 𝐾 )
4thatlem0.a 𝐴 = ( Atoms ‘ 𝐾 )
4thatlem0.h 𝐻 = ( LHyp ‘ 𝐾 )
4thatlem0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
4thatlem0.v 𝑉 = ( ( 𝑃 𝑆 ) 𝑊 )
4thatlem0.c 𝐶 = ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) )
Assertion 4atexlemnclw ( 𝜑 → ¬ 𝐶 𝑊 )

Proof

Step Hyp Ref Expression
1 4thatlem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) )
2 4thatlem0.l = ( le ‘ 𝐾 )
3 4thatlem0.j = ( join ‘ 𝐾 )
4 4thatlem0.m = ( meet ‘ 𝐾 )
5 4thatlem0.a 𝐴 = ( Atoms ‘ 𝐾 )
6 4thatlem0.h 𝐻 = ( LHyp ‘ 𝐾 )
7 4thatlem0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 4thatlem0.v 𝑉 = ( ( 𝑃 𝑆 ) 𝑊 )
9 4thatlem0.c 𝐶 = ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) )
10 1 4atexlemkl ( 𝜑𝐾 ∈ Lat )
11 1 3 5 4atexlemqtb ( 𝜑 → ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
12 1 3 5 4atexlempsb ( 𝜑 → ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
13 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
14 13 2 4 latmle1 ( ( 𝐾 ∈ Lat ∧ ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) ( 𝑄 𝑇 ) )
15 10 11 12 14 syl3anc ( 𝜑 → ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) ( 𝑄 𝑇 ) )
16 9 15 eqbrtrid ( 𝜑𝐶 ( 𝑄 𝑇 ) )
17 simp13r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ¬ 𝑄 𝑊 )
18 1 17 sylbi ( 𝜑 → ¬ 𝑄 𝑊 )
19 1 4atexlemkc ( 𝜑𝐾 ∈ CvLat )
20 1 2 3 4 5 6 7 8 4atexlemv ( 𝜑𝑉𝐴 )
21 1 4atexlemq ( 𝜑𝑄𝐴 )
22 1 4atexlemt ( 𝜑𝑇𝐴 )
23 1 2 3 4 5 6 7 4atexlemu ( 𝜑𝑈𝐴 )
24 1 2 3 4 5 6 7 8 4atexlemunv ( 𝜑𝑈𝑉 )
25 1 4atexlemutvt ( 𝜑 → ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) )
26 5 3 cvlsupr6 ( ( 𝐾 ∈ CvLat ∧ ( 𝑈𝐴𝑉𝐴𝑇𝐴 ) ∧ ( 𝑈𝑉 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) → 𝑇𝑉 )
27 26 necomd ( ( 𝐾 ∈ CvLat ∧ ( 𝑈𝐴𝑉𝐴𝑇𝐴 ) ∧ ( 𝑈𝑉 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) → 𝑉𝑇 )
28 19 23 20 22 24 25 27 syl132anc ( 𝜑𝑉𝑇 )
29 2 3 5 cvlatexch2 ( ( 𝐾 ∈ CvLat ∧ ( 𝑉𝐴𝑄𝐴𝑇𝐴 ) ∧ 𝑉𝑇 ) → ( 𝑉 ( 𝑄 𝑇 ) → 𝑄 ( 𝑉 𝑇 ) ) )
30 19 20 21 22 28 29 syl131anc ( 𝜑 → ( 𝑉 ( 𝑄 𝑇 ) → 𝑄 ( 𝑉 𝑇 ) ) )
31 1 6 4atexlemwb ( 𝜑𝑊 ∈ ( Base ‘ 𝐾 ) )
32 13 2 4 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑆 ) 𝑊 ) 𝑊 )
33 10 12 31 32 syl3anc ( 𝜑 → ( ( 𝑃 𝑆 ) 𝑊 ) 𝑊 )
34 8 33 eqbrtrid ( 𝜑𝑉 𝑊 )
35 1 2 3 4 5 6 7 8 4atexlemtlw ( 𝜑𝑇 𝑊 )
36 13 5 atbase ( 𝑉𝐴𝑉 ∈ ( Base ‘ 𝐾 ) )
37 20 36 syl ( 𝜑𝑉 ∈ ( Base ‘ 𝐾 ) )
38 13 5 atbase ( 𝑇𝐴𝑇 ∈ ( Base ‘ 𝐾 ) )
39 22 38 syl ( 𝜑𝑇 ∈ ( Base ‘ 𝐾 ) )
40 13 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑉 𝑊𝑇 𝑊 ) ↔ ( 𝑉 𝑇 ) 𝑊 ) )
41 10 37 39 31 40 syl13anc ( 𝜑 → ( ( 𝑉 𝑊𝑇 𝑊 ) ↔ ( 𝑉 𝑇 ) 𝑊 ) )
42 34 35 41 mpbi2and ( 𝜑 → ( 𝑉 𝑇 ) 𝑊 )
43 13 5 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
44 21 43 syl ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) )
45 1 4atexlemk ( 𝜑𝐾 ∈ HL )
46 13 3 5 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑉𝐴𝑇𝐴 ) → ( 𝑉 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
47 45 20 22 46 syl3anc ( 𝜑 → ( 𝑉 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
48 13 2 lattr ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑉 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ( 𝑉 𝑇 ) ∧ ( 𝑉 𝑇 ) 𝑊 ) → 𝑄 𝑊 ) )
49 10 44 47 31 48 syl13anc ( 𝜑 → ( ( 𝑄 ( 𝑉 𝑇 ) ∧ ( 𝑉 𝑇 ) 𝑊 ) → 𝑄 𝑊 ) )
50 42 49 mpan2d ( 𝜑 → ( 𝑄 ( 𝑉 𝑇 ) → 𝑄 𝑊 ) )
51 30 50 syld ( 𝜑 → ( 𝑉 ( 𝑄 𝑇 ) → 𝑄 𝑊 ) )
52 18 51 mtod ( 𝜑 → ¬ 𝑉 ( 𝑄 𝑇 ) )
53 nbrne2 ( ( 𝐶 ( 𝑄 𝑇 ) ∧ ¬ 𝑉 ( 𝑄 𝑇 ) ) → 𝐶𝑉 )
54 16 52 53 syl2anc ( 𝜑𝐶𝑉 )
55 1 4atexlemw ( 𝜑𝑊𝐻 )
56 45 55 jca ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
57 1 4atexlempw ( 𝜑 → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
58 1 4atexlems ( 𝜑𝑆𝐴 )
59 1 2 3 4 5 6 7 8 9 4atexlemc ( 𝜑𝐶𝐴 )
60 1 2 3 5 4atexlempns ( 𝜑𝑃𝑆 )
61 13 2 4 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) ( 𝑃 𝑆 ) )
62 10 11 12 61 syl3anc ( 𝜑 → ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) ( 𝑃 𝑆 ) )
63 9 62 eqbrtrid ( 𝜑𝐶 ( 𝑃 𝑆 ) )
64 2 3 4 5 6 8 lhpat3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑆𝐴𝐶𝐴 ) ∧ ( 𝑃𝑆𝐶 ( 𝑃 𝑆 ) ) ) → ( ¬ 𝐶 𝑊𝐶𝑉 ) )
65 56 57 58 59 60 63 64 syl222anc ( 𝜑 → ( ¬ 𝐶 𝑊𝐶𝑉 ) )
66 54 65 mpbird ( 𝜑 → ¬ 𝐶 𝑊 )