Step |
Hyp |
Ref |
Expression |
1 |
|
4thatlem.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
2 |
|
4thatlem0.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
4thatlem0.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
4thatlem0.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
4thatlem0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
4thatlem0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
4thatlem0.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
4thatlem0.v |
⊢ 𝑉 = ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) |
9 |
|
4thatlem0.c |
⊢ 𝐶 = ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) |
10 |
1
|
4atexlemkl |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
11 |
1 3 5
|
4atexlemqtb |
⊢ ( 𝜑 → ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
12 |
1 3 5
|
4atexlempsb |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
14 |
13 2 4
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑄 ∨ 𝑇 ) ) |
15 |
10 11 12 14
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑄 ∨ 𝑇 ) ) |
16 |
9 15
|
eqbrtrid |
⊢ ( 𝜑 → 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ) |
17 |
|
simp13r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑄 ≤ 𝑊 ) |
18 |
1 17
|
sylbi |
⊢ ( 𝜑 → ¬ 𝑄 ≤ 𝑊 ) |
19 |
1
|
4atexlemkc |
⊢ ( 𝜑 → 𝐾 ∈ CvLat ) |
20 |
1 2 3 4 5 6 7 8
|
4atexlemv |
⊢ ( 𝜑 → 𝑉 ∈ 𝐴 ) |
21 |
1
|
4atexlemq |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
22 |
1
|
4atexlemt |
⊢ ( 𝜑 → 𝑇 ∈ 𝐴 ) |
23 |
1 2 3 4 5 6 7
|
4atexlemu |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
24 |
1 2 3 4 5 6 7 8
|
4atexlemunv |
⊢ ( 𝜑 → 𝑈 ≠ 𝑉 ) |
25 |
1
|
4atexlemutvt |
⊢ ( 𝜑 → ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) |
26 |
5 3
|
cvlsupr6 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ≠ 𝑉 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) → 𝑇 ≠ 𝑉 ) |
27 |
26
|
necomd |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ≠ 𝑉 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) → 𝑉 ≠ 𝑇 ) |
28 |
19 23 20 22 24 25 27
|
syl132anc |
⊢ ( 𝜑 → 𝑉 ≠ 𝑇 ) |
29 |
2 3 5
|
cvlatexch2 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ 𝑉 ≠ 𝑇 ) → ( 𝑉 ≤ ( 𝑄 ∨ 𝑇 ) → 𝑄 ≤ ( 𝑉 ∨ 𝑇 ) ) ) |
30 |
19 20 21 22 28 29
|
syl131anc |
⊢ ( 𝜑 → ( 𝑉 ≤ ( 𝑄 ∨ 𝑇 ) → 𝑄 ≤ ( 𝑉 ∨ 𝑇 ) ) ) |
31 |
1 6
|
4atexlemwb |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
32 |
13 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ≤ 𝑊 ) |
33 |
10 12 31 32
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ≤ 𝑊 ) |
34 |
8 33
|
eqbrtrid |
⊢ ( 𝜑 → 𝑉 ≤ 𝑊 ) |
35 |
1 2 3 4 5 6 7 8
|
4atexlemtlw |
⊢ ( 𝜑 → 𝑇 ≤ 𝑊 ) |
36 |
13 5
|
atbase |
⊢ ( 𝑉 ∈ 𝐴 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
37 |
20 36
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
38 |
13 5
|
atbase |
⊢ ( 𝑇 ∈ 𝐴 → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
39 |
22 38
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
40 |
13 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑉 ≤ 𝑊 ∧ 𝑇 ≤ 𝑊 ) ↔ ( 𝑉 ∨ 𝑇 ) ≤ 𝑊 ) ) |
41 |
10 37 39 31 40
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑉 ≤ 𝑊 ∧ 𝑇 ≤ 𝑊 ) ↔ ( 𝑉 ∨ 𝑇 ) ≤ 𝑊 ) ) |
42 |
34 35 41
|
mpbi2and |
⊢ ( 𝜑 → ( 𝑉 ∨ 𝑇 ) ≤ 𝑊 ) |
43 |
13 5
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
44 |
21 43
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
45 |
1
|
4atexlemk |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
46 |
13 3 5
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → ( 𝑉 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
47 |
45 20 22 46
|
syl3anc |
⊢ ( 𝜑 → ( 𝑉 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
48 |
13 2
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑉 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ≤ ( 𝑉 ∨ 𝑇 ) ∧ ( 𝑉 ∨ 𝑇 ) ≤ 𝑊 ) → 𝑄 ≤ 𝑊 ) ) |
49 |
10 44 47 31 48
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑄 ≤ ( 𝑉 ∨ 𝑇 ) ∧ ( 𝑉 ∨ 𝑇 ) ≤ 𝑊 ) → 𝑄 ≤ 𝑊 ) ) |
50 |
42 49
|
mpan2d |
⊢ ( 𝜑 → ( 𝑄 ≤ ( 𝑉 ∨ 𝑇 ) → 𝑄 ≤ 𝑊 ) ) |
51 |
30 50
|
syld |
⊢ ( 𝜑 → ( 𝑉 ≤ ( 𝑄 ∨ 𝑇 ) → 𝑄 ≤ 𝑊 ) ) |
52 |
18 51
|
mtod |
⊢ ( 𝜑 → ¬ 𝑉 ≤ ( 𝑄 ∨ 𝑇 ) ) |
53 |
|
nbrne2 |
⊢ ( ( 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ ¬ 𝑉 ≤ ( 𝑄 ∨ 𝑇 ) ) → 𝐶 ≠ 𝑉 ) |
54 |
16 52 53
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ≠ 𝑉 ) |
55 |
1
|
4atexlemw |
⊢ ( 𝜑 → 𝑊 ∈ 𝐻 ) |
56 |
45 55
|
jca |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
57 |
1
|
4atexlempw |
⊢ ( 𝜑 → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
58 |
1
|
4atexlems |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
59 |
1 2 3 4 5 6 7 8 9
|
4atexlemc |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
60 |
1 2 3 5
|
4atexlempns |
⊢ ( 𝜑 → 𝑃 ≠ 𝑆 ) |
61 |
13 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑃 ∨ 𝑆 ) ) |
62 |
10 11 12 61
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑃 ∨ 𝑆 ) ) |
63 |
9 62
|
eqbrtrid |
⊢ ( 𝜑 → 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) |
64 |
2 3 4 5 6 8
|
lhpat3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑆 ∧ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ) → ( ¬ 𝐶 ≤ 𝑊 ↔ 𝐶 ≠ 𝑉 ) ) |
65 |
56 57 58 59 60 63 64
|
syl222anc |
⊢ ( 𝜑 → ( ¬ 𝐶 ≤ 𝑊 ↔ 𝐶 ≠ 𝑉 ) ) |
66 |
54 65
|
mpbird |
⊢ ( 𝜑 → ¬ 𝐶 ≤ 𝑊 ) |